Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
2.
Viruses ; 14(8)2022 07 23.
Article En | MEDLINE | ID: mdl-35893677

Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.


HIV Infections , HTLV-I Infections , Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Paraparesis, Tropical Spastic , Adult , Antiviral Agents , Humans
3.
Life Sci Alliance ; 5(7)2022 07.
Article En | MEDLINE | ID: mdl-35396335

The InterFeron-Induced TransMembrane proteins (IFITMs) are members of the dispanin/CD225 family that act as broad viral inhibitors by preventing viral-to-cellular membrane fusion. In this study, we uncover egress from the Golgi as an important step in the biology of IFITM3 by identifying the domain that regulates this process and that similarly controls the egress of the dispanins IFITM1 and PRRT2, protein linked to paroxysmal kinesigenic dyskinesia. In the case of IFITM3, high levels of expression of wild-type, or mutations in the Golgi egress domain, lead to accumulation of IFITM3 in the Golgi and drive generalized glycoprotein trafficking defects. These defects can be relieved upon incubation with Amphotericin B, compound known to relieve IFITM-driven membrane fusion defects, as well as by v-SNARE overexpression, suggesting that IFITM3 interferes with membrane fusion processes important for Golgi functionalities. The comparison of glycoprotein trafficking in WT versus IFITMs-KO cells indicates that the modulation of the secretory pathway is a novel feature of IFITM proteins. Overall, our study defines a novel domain that regulates the egress of several dispanin/CD225 members from the Golgi and identifies a novel modulatory function for IFITM3.


Membrane Proteins , RNA-Binding Proteins , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Secretory Pathway , Virus Internalization
4.
Commun Biol ; 4(1): 1292, 2021 11 16.
Article En | MEDLINE | ID: mdl-34785771

Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.


Immunity, Innate/physiology , Nipah Virus/physiology , Signal Transduction/immunology , Viral Proteins/metabolism , Animals , Cell Line , Cell Nucleus/immunology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , NF-kappa B , Nipah Virus/genetics
5.
Pathogens ; 10(8)2021 Aug 09.
Article En | MEDLINE | ID: mdl-34451465

The years 2020 and 2021 will remain memorable years for many reasons [...].

6.
Front Microbiol ; 11: 2041, 2020.
Article En | MEDLINE | ID: mdl-33042035

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). To date, it is the unique published example of a virus able to form a biofilm at the surface of infected cells. Deeply studied in bacteria, bacterial biofilms represent multicellular assemblies of bacteria in contact with a surface and shielded by the extracellular matrix (ECM). Microbial lifestyle in biofilms, either viral or bacterial, is opposed structurally and physiologically to an isolated lifestyle, in which viruses or bacteria freely float in their environment. HTLV-1 biofilm formation is believed to be promoted by viral proteins, mainly Tax, through remodeling of the ECM of the infected cells. HTLV-1 biofilm has been linked to cell-to-cell transmission of the virus. However, in comparison to bacterial biofilms, very little is known on kinetics of viral biofilm formation or dissemination, but also on its pathophysiological roles, such as escape from immune detection or therapeutic strategies, as well as promotion of leukemogenesis. The switch between production of cell-free isolated virions and cell-associated viral biofilm, although not fully apprehended yet, remains a key step to understand HTLV-1 infection and pathogenesis.

7.
Virologie (Montrouge) ; 23(5): 16-31, 2019 10 01.
Article En | MEDLINE | ID: mdl-31826846

Currently, more than 10% of human cancers are associated with viral infection. Studies on oncoviruses led to the development of clinical intervention strategies and elucidated fundamental cellular events altered upon cell transformation. Cancer cells exhibit several hallmarks including genomic instability, defined as a high frequency of mutations including gain or loss of chromosomes. The centrosome is an organelle that governs mitotic chromosome segregation and that functions as a signaling platform downstream of the DNA damage response. Here, we review the current literature to highlight how oncoviruses induce genomic instability via the deregulation of the centrosome. Viral interference with the centrosome duplication cycle, leading to centrosome amplification, is illustrated, with a special emphasis on mechanisms shared by several viral families. In addition, we discuss how oncoviruses could alter the signaling functions of the centrosome, and we comment on the bibliographic gaps that could be addressed by future research.


Aneuploidy , Genomic Instability , Mitosis , Cell Transformation, Neoplastic/genetics , Centrosome , Genomic Instability/genetics , Humans , Mitosis/genetics
8.
Virologie (Montrouge) ; 23(5): 304-320, 2019 10 01.
Article Fr | MEDLINE | ID: mdl-31826851

Currently, more than 10% of human cancers are associated with viral infection. Studies on oncoviruses led to the development of clinical intervention strategies and elucidated fundamental cellular events altered upon cell transformation. Cancer cells exhibit several hallmarks including genomic instability, defined as a high frequency of mutations including gain or loss of chromosomes. The centrosome is an organelle that governs mitotic chromosome segregation and that functions as a signaling platform downstream of the DNA damage response. Here, we review the current literature to highlight how oncoviruses induce genomic instability via the deregulation of the centrosome. Viral interference with the centrosome duplication cycle, leading to centrosome amplification, is illustrated, with a special emphasis on mechanisms shared by several viral families. In addition, we discuss how oncoviruses could alter the signaling functions of the centrosome, and we comment on the bibliographic gaps that could be addressed by future research.


Aneuploidy , Genomic Instability , Mitosis , Cell Transformation, Neoplastic/genetics , Centrosome , Genomic Instability/genetics , Humans , Mitosis/genetics
9.
Sci Rep ; 9(1): 16014, 2019 11 05.
Article En | MEDLINE | ID: mdl-31690813

The NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170-206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.


Gene Products, tax/metabolism , Human T-lymphotropic virus 1/metabolism , NF-kappa B/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Gene Products, tax/genetics , HEK293 Cells , Humans , Jurkat Cells , Mice , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Sequestosome-1 Protein/antagonists & inhibitors , Sequestosome-1 Protein/genetics , Signal Transduction , Ubiquitin/chemistry
10.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Article En | MEDLINE | ID: mdl-31600344

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Antiviral Agents/pharmacology , Exoribonucleases/pharmacology , Protein Biosynthesis , RNA, Viral/metabolism , Vesicular Stomatitis/immunology , Vesiculovirus/immunology , Virus Replication/drug effects , Animals , Exoribonucleases/physiology , HeLa Cells , Humans , Mice , Mice, Knockout , RNA Stability , RNA, Viral/genetics , Vesicular Stomatitis/drug therapy , Vesicular Stomatitis/virology , Vesiculovirus/drug effects
11.
Front Microbiol ; 10: 1302, 2019.
Article En | MEDLINE | ID: mdl-31244811

Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.

12.
PLoS Negl Trop Dis ; 12(10): e0006812, 2018 10.
Article En | MEDLINE | ID: mdl-30273350

Simian T-Leukemia Virus type 1 and Simian Foamy Virus infect non-human primates. While STLV-1, as HTLV-1, causes Adult T-cell Leukemia/lymphoma, SFV infection is asymptomatic. Both retroviruses can be transmitted from NHPs to humans through bites that allow contact between infected saliva and recipient blood. Because both viruses infect CD4+ T-cells, they might interfere with each other replication, and this might impact viral transmission. Impact of STLV-1 co-infection on SFV replication was analyzed in 18 SFV-positive/STLV-1-negative and 18 naturally SFV/STLV-1 co-infected Papio anubis. Even if 9 animals were found STLV-1-positive in saliva, STLV-1 PVL was much higher in the blood. SFV proviruses were detected in the saliva of all animals. Interestingly, SFV proviral load was much higher in the blood of STLV-1/SFV co-infected animals, compared to STLV-1-negative animals. Given that soluble Tax protein can enter uninfected cells, we tested its effect on foamy virus promoter and we show that Tax protein can transactivate the foamy LTR. This demonstrates that true STLV-1 co-infection or Tax only has an impact on SFV replication and may influence the ability of the virus to be zoonotically transmitted as well as its ability to promote hematological abnormalities.


Coinfection/virology , Deltaretrovirus Infections/virology , Retroviridae Infections/virology , Simian T-lymphotropic virus 1/isolation & purification , Simian foamy virus/isolation & purification , Viral Load , Animals , Blood/virology , Deltaretrovirus Infections/complications , Disease Transmission, Infectious , Papio anubis , Proviruses/isolation & purification , Retroviridae Infections/complications , Saliva/virology , Virus Replication
13.
Oncogene ; 37(21): 2806-2816, 2018 05.
Article En | MEDLINE | ID: mdl-29507418

Since the identification of the antisense protein of HTLV-2 (APH-2) and the demonstration that APH-2 mRNA is expressed in vivo in most HTLV-2 carriers, much effort has been dedicated to the elucidation of similarities and/or differences between APH-2 and HBZ, the antisense protein of HTLV-1. Similar to HBZ, APH-2 negatively regulates HTLV-2 transcription. However, it does not promote cell proliferation. In contrast to HBZ, APH-2 half-life is very short. Here, we show that APH-2 is addressed to PML nuclear bodies in T-cells, as well as in different cell types. Covalent SUMOylation of APH-2 is readily detected, indicating that APH-2 might be addressed to the PML nuclear bodies in a SUMO-dependent manner. We further show that silencing of PML increases expression of APH-2, while expression of HBZ is unaffected. On the other hand, SUMO-1 overexpression leads to a specific loss of APH-2 expression that is restored upon proteasome inhibition. Furthermore, the carboxy-terminal LAGLL motif of APH-2 is responsible for both the targeting of the protein to PML nuclear bodies and its short half-life. Taken together, these observations indicate that natural APH-2 targeting to PML nuclear bodies induces proteasomal degradation of the viral protein in a SUMO-dependent manner. Hence, this study deciphers the molecular and cellular bases of APH-2 short half-life in comparison to HBZ and highlights key differences in the post-translational mechanisms that control the expression of both proteins.


Human T-lymphotropic virus 2/metabolism , Intranuclear Inclusion Bodies/metabolism , Promyelocytic Leukemia Protein/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Viral , Half-Life , HeLa Cells , Human T-lymphotropic virus 2/genetics , Humans , Jurkat Cells , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Retroviridae Proteins/metabolism , SUMO-1 Protein/metabolism , Sumoylation , Transcription, Genetic
14.
Front Microbiol ; 9: 278, 2018.
Article En | MEDLINE | ID: mdl-29593659

Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.

18.
PLoS Pathog ; 13(4): e1006353, 2017 Apr.
Article En | MEDLINE | ID: mdl-28426803

Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-ß DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type-I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection.


Antiviral Agents/pharmacology , Cytokines/immunology , Dendritic Cells/immunology , HTLV-I Infections/immunology , Human T-lymphotropic virus 1/immunology , Paraparesis, Tropical Spastic/immunology , Adult , Dendritic Cells/virology , HTLV-I Infections/transmission , HTLV-I Infections/virology , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 1/physiology , Humans , Interferon Type I/immunology , Models, Biological , Paraparesis, Tropical Spastic/pathology , Paraparesis, Tropical Spastic/virology , T-Lymphocytes/immunology , T-Lymphocytes/virology
19.
J Virol ; 90(17): 7607-17, 2016 09 01.
Article En | MEDLINE | ID: mdl-27334587

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


HIV-1/physiology , Human T-lymphotropic virus 1/physiology , Virus Internalization , Virus Release , Biological Transport , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/virology , Humans , Models, Biological , Virus Replication
...