Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
PLoS One ; 16(12): e0260954, 2021.
Article En | MEDLINE | ID: mdl-34932587

Elimination of the binding of immunoglobulin Fc to Fc gamma receptors (FcγR) is highly desirable for the avoidance of unwanted inflammatory responses to therapeutic antibodies and fusion proteins. Many different approaches have been described in the literature but none of them completely eliminates binding to all of the Fcγ receptors. Here we describe a set of novel variants having specific amino acid substitutions in the Fc region at L234 and L235 combined with the substitution G236R. They show no detectable binding to Fcγ receptors or to C1q, are inactive in functional cell-based assays and do not elicit inflammatory cytokine responses. Meanwhile, binding to FcRn, manufacturability, stability and potential for immunogenicity are unaffected. These variants have the potential to improve the safety and efficacy of therapeutic antibodies and Fc fusion proteins.


Antibody-Dependent Cell Cytotoxicity , Complement C1q/metabolism , Histocompatibility Antigens Class I/metabolism , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Receptors, IgG/metabolism , Amino Acid Substitution , Antibody Affinity , Complement C1q/genetics , Complement C1q/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Protein Binding , Protein Engineering , Receptors, Fc/genetics , Receptors, Fc/immunology , Receptors, IgG/genetics , Receptors, IgG/immunology
2.
Front Microbiol ; 11: 913, 2020.
Article En | MEDLINE | ID: mdl-32477312

Salmonella Enteritidis is the most prevalent food-borne pathogen associated with egg-related outbreaks in the European Union. During egg colonization, S. Enteritidis must resist the powerful anti-bacterial activities of egg white (EW) and overcome ovotransferrin-imposed iron-restriction (the most important anti-bacterial mechanism of EW). Many pathogens respond to iron restriction by secreting iron-chelating chemicals called siderophores but EW contains a siderophore-sequestering "lipocalin" protein (Ex-FABP) that is predicted to limit the usefulness of siderophores in EW. S. Enteritidis produces two siderophores: enterobactin, which is strongly bound by Ex-FABP; and the di-glucosylated enterobactin-derivative, salmochelin (a so-called "stealth" siderophore), which is not recognized by Ex-FABP. Thus, production of salmochelin may allow S. Enteritidis to escape Ex-FABP-mediated growth inhibition under iron restriction although it is unclear whether its EW concentration is sufficient to inhibit pathogens. Further, two other lipocalins (Cal-γ and α-1-ovoglycoprotein) are found in EW but their siderophore sequestration potential remains unexplored. In addition, the effect of EW lipocalins on the major EW pathogen, S. Enteritidis, has yet to be reported. We overexpressed and purified the three lipocalins of EW and investigated their ability to interact with the siderophores of S. Enteritidis, as well as their EW concentrations. The results show that Ex-FABP is present in EW at concentrations (5.1 µM) sufficient to inhibit growth of a salmochelin-deficient S. Enteritidis mutant under iron restriction but has little impact on the salmochelin-producing wildtype. Neither Cal-γ nor α-1-ovoglycoprotein bind salmochelin or enterobactin, nor do they inhibit iron-restricted growth of S. Enteritidis. However, both are present in EW at significant concentrations (5.6 and 233 µM, respectively) indicating that α-1-ovoglycoprotein is the 4th most abundant protein in EW, with Cal-γ and Ex-FABP at 11th and 12th most abundant. Further, we confirm the preference (16-fold) of Ex-FABP for the ferrated form (K d of 5.3 nM) of enterobactin over the iron-free form (K d of 86.2 nM), and its lack of affinity for salmochelin. In conclusion, our findings show that salmochelin production by S. Enteritidis enables this key egg-associated pathogen to overcome the enterobactin-sequestration activity of Ex-FABP when this lipocalin is provided at levels found in EW.

3.
Biometals ; 32(3): 453-467, 2019 06.
Article En | MEDLINE | ID: mdl-30810876

Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether Ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores.


Anti-Bacterial Agents/pharmacology , Egg White/chemistry , Iron/metabolism , Lipocalins/metabolism , Salmonella enterica/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Chickens , Egg White/microbiology , Lipocalins/chemistry , Microbial Sensitivity Tests , Salmonella enterica/growth & development
...