Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nanoscale Horiz ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38693879

Reliable quality and sustainable processes must be developed for commodities to enter the commercial stage. For next-generation photovoltaic applications such as perovskite solar cells, it is essential to manufacture high-quality photoactive perovskites via eco-friendly processes. We demonstrate that ethanol, an ideal green solvent, can be applied to yield efficient alpha-phase FAPbI3 perovskite microcrystals.

2.
Nat Commun ; 15(1): 4547, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806514

Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces. Our L-site exchange process (L: barrier molecule cation) enables the formation of stable interfacial structures with moderate conductivity despite the thick barriers. Compared to popular short (∼1 nm) Ls, our approach results in enhanced radiation efficiency through the recursive process of photon recycling. This leads to the realization of radiative perovskite photovoltaics with both high photovoltaic efficiency (in-lab 26.0%, certified to 25.2%) and electroluminescence quantum efficiency (19.7 % at peak, 17.8% at 1-sun equivalent condition). Furthermore, the stable crystallinity of oleylammonium-based quantum wells enables our devices to maintain high efficiencies for over 1000 h of operation and >2 years of storage.

3.
J Am Chem Soc ; 143(38): 15606-15615, 2021 Sep 29.
Article En | MEDLINE | ID: mdl-34542273

Light-emitting diodes (LEDs) based on metal halide perovskite quantum dots (QDs) have achieved impressive external quantum efficiencies; however, the lack of surface protection of QDs, combined with efficiency droop, decreases device operating lifetime at brightnesses of interest. The epitaxial incorporation of QDs within a semiconducting shell provides surface passivation and exciton confinement. Achieving this goal in the case of perovskite QDs remains an unsolved challenge in view of the materials' chemical instability. Here, we report perovskite QDs that remain stable in a thin layer of precursor solution of perovskite, and we use strained QDs as nucleation centers to drive the homogeneous crystallization of a perovskite matrix. Type-I band alignment ensures that the QDs are charge acceptors and radiative emitters. The new materials show suppressed Auger bi-excition recombination and bright luminescence at high excitation (600 W cm-2), whereas control materials exhibit severe bleaching. Primary red LEDs based on the new materials show an external quantum efficiency of 18%, and these retain high performance to brightnesses exceeding 4700 cd m-2. The new materials enable LEDs having an operating half-life of 2400 h at an initial luminance of 100 cd m-2, representing a 100-fold enhancement relative to the best primary red perovskite LEDs.

4.
Adv Mater ; 33(41): e2103394, 2021 Oct.
Article En | MEDLINE | ID: mdl-34425038

The open-circuit voltage (Voc ) of perovskite solar cells is limited by non-radiative recombination at perovskite/carrier transport layer (CTL) interfaces. 2D perovskite post-treatments offer a means to passivate the top interface; whereas, accessing and passivating the buried interface underneath the perovskite film requires new material synthesis strategies. It is posited that perovskite ink containing species that bind strongly to substrates can spontaneously form a passivating layer with the bottom CTL. The concept using organic spacer cations with rich NH2 groups is implemented, where readily available hydrogens have large binding affinity to under-coordinated oxygens on the metal oxide substrate surface, inducing preferential crystallization of a thin 2D layer at the buried interface. The passivation effect of this 2D layer is examined using steady-state and time-resolved photoluminescence spectroscopy: the 2D interlayer suppresses non-radiative recombination at the buried perovskite/CTL interface, leading to a 72% reduction in surface recombination velocity. This strategy enables a 65 mV increase in Voc for NiOx based p-i-n devices, and a 100 mV increase in Voc for SnO2 -based n-i-p devices. Inverted solar cells with 20.1% power conversion efficiency (PCE) for 1.70 eV and 22.9% PCE for 1.55 eV bandgap perovskites are demonstrated.

5.
Nat Commun ; 12(1): 3472, 2021 Jun 09.
Article En | MEDLINE | ID: mdl-34108463

Many of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability - but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr3)0.05(FAPbI3)0.95 perovskites to vinylbenzylammonium ligand cations. Density functional theory simulations suggest ligands incorporate sequentially into the 3D lattice, driven by phenyl ring stacking, progressively bisecting the 3D perovskite into lower-dimensional fragments to form stable interfaces. Slowing the 2D/3D transformation with higher concentrations of antisolvent yields thinner 2D layers formed conformally onto 3D grains, improving carrier extraction and device efficiency (20% 3D-only, 22% 2D/3D). Controlling this progressive dimensional reduction has potential to further improve the performance of 2D/3D perovskite photovoltaics.

6.
J Phys Chem Lett ; 11(13): 5115-5119, 2020 Jul 02.
Article En | MEDLINE | ID: mdl-32511932

2D/3D heterojunction perovskite solar cells have demonstrated superior efficiency and stability compared to their fully 3D counterparts. Previous studies have focused on producing 2D layers containing predominantly n = 1 perovskite quantum wells. In this report we demonstrate a technique to introduce dimensional mixing into the 2D layer, and we show that this leads to more efficient devices relative to controls. Simulations suggest that the improvements are due to a reduction in trap state density and superior band alignment between the 3D/2D perovskite and the hole-transporting layer.

7.
Nat Commun ; 11(1): 1257, 2020 Mar 09.
Article En | MEDLINE | ID: mdl-32152324

Tandem solar cells involving metal-halide perovskite subcells offer routes to power conversion efficiencies (PCEs) that exceed the single-junction limit; however, reported PCE values for tandems have so far lain below their potential due to inefficient photon harvesting. Here we increase the optical path length in perovskite films by preserving smooth morphology while increasing thickness using a method we term boosted solvent extraction. Carrier collection in these films - as made - is limited by an insufficient electron diffusion length; however, we further find that adding a Lewis base reduces the trap density and enhances the electron-diffusion length to 2.3 µm, enabling a 19% PCE for 1.63 eV semi-transparent perovskite cells having an average near-infrared transmittance of 85%. The perovskite top cell combined with solution-processed colloidal quantum dot:organic hybrid bottom cell leads to a PCE of 24%; while coupling the perovskite cell with a silicon bottom cell yields a PCE of 28.2%.

8.
Nature ; 567(7749): 511-515, 2019 03.
Article En | MEDLINE | ID: mdl-30918371

Perovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells1: poly(triarylamine) (PTAA)2-5 and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD)6,7. However, these materials have several drawbacks in terms of commercialization, including high cost8, the need for hygroscopic dopants that trigger degradation of the perovskite layer9 and limitations in their deposition processes10. Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties11-13, low cost8,14 and ease of fabrication15-18, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16 per cent19. Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface. Our device has a certified power conversion efficiency of 22.7 per cent with hysteresis of ±0.51 per cent; exhibits good stability at 85 per cent relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95 per cent of the initial efficiency. We extend our platform to large-area modules (24.97 square centimetres)-which are fabricated using a scalable bar-coating method for the deposition of P3HT-and achieve a power conversion efficiency of 16.0 per cent. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research.

9.
Science ; 356(6345): 1376-1379, 2017 06 30.
Article En | MEDLINE | ID: mdl-28663498

The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell's performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.

10.
Chem Sci ; 8(1): 734-741, 2017 Jan 01.
Article En | MEDLINE | ID: mdl-28451221

We have designed and synthesized fluorinated indolo[3,2-b]indole (IDID) derivatives as crystalline hole-transporting materials (HTM) for perovskite solar cells. The fluorinated IDID backbone enables a tight molecular arrangement stacked by strong π-π interactions, leading to a higher hole mobility than that of the current HTM standard, p,p-spiro-OMeTAD, with a spherical shape and amorphous morphology. Moreover, the photoluminescence quenching in a perovskite/HTM film is more effective at the interface of the perovskite with IDIDF as compared to that of p,p-spiro-OMeTAD. As a consequence, the device fabricated using IDIDF shows superior photovoltaic properties compared to that using p,p-spiro-OMeTAD, exhibiting an optimal performance of 19%. Thus, this remarkable result demonstrates IDID core-based materials as a new class of HTMs for highly efficient perovskite solar cells.

11.
Adv Mater ; 25(18): 2583-8, 2013 May 14.
Article En | MEDLINE | ID: mdl-23526435

Copolymers composed of diketopyrrolopyrrole and phenylene units with different numbers of fluorine subsitution are synthesized. When the effect of the number of fluorine substitution on the n-channel transporting property is investigated, the polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).

...