Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663461

ABSTRACT

Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt+ Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.

2.
Int J Radiat Oncol Biol Phys ; 118(3): 801-816, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37758068

ABSTRACT

PURPOSE: Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS: H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS: In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS: Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.


Subject(s)
Histones , Radiodermatitis , Animals , Mice , Histones/metabolism , Skin/radiation effects , Keratinocytes/physiology , Radiation, Ionizing , Cellular Senescence/radiation effects
3.
Front Immunol ; 14: 1256133, 2023.
Article in English | MEDLINE | ID: mdl-38162658

ABSTRACT

Plaque psoriasis is an autoinflammatory and autoimmune skin disease, affecting 1-3% of the population worldwide. Previously, high levels of IL-36 family cytokines were found in psoriatic skin lesions, thereby contributing to keratinocyte hyperproliferation and infiltration of immune cells such as neutrophils. While treatment with anti-IL36 receptor (IL36R) antibodies was recently approved for generalized pustular psoriasis (GPP), it remains unclear, if targeting the IL36R might also inhibit plaque psoriasis. Here we show that antibody-mediated inhibition of IL36R is sufficient to suppress imiquimod-induced psoriasis-like skin inflammation and represses the disease's development in a model that depends on IL-17A overexpression in the skin. Importantly, treatment with anti-IL36R antibodies inhibited skin inflammation and attenuated psoriasis-associated, systemic inflammation. This is possibly due to a widespread effect of IL36R inhibition, which not only suppresses pro-inflammatory gene expression in keratinocytes, but also the activation of other immune cells such as T-cells or dendritic cells. In conclusion, we propose that inhibition of the IL-36 signaling pathway might constitute an attractive, alternative approach for treating IL-17A-driven psoriasis and psoriasis-linked comorbidities.


Subject(s)
Dermatitis , Psoriasis , Humans , Interleukin-17/metabolism , Skin , Dermatitis/pathology , Signal Transduction , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...