Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 15(1): 91, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237325

ABSTRACT

BACKGROUND: Idiopathic non-clonal cytopenia (ICUS) and clonal cytopenia (CCUS) are common in the elderly population. While these entities have similar clinical presentations with peripheral blood cytopenia and less than 10% bone marrow dysplasia, their malignant potential is different and the biological relationship between these disorders and myeloid neoplasms such as myelodysplastic syndrome (MDS) is not fully understood. Aberrant DNA methylation has previously been described to play a vital role in MDS and acute myeloid leukemia (AML) pathogenesis. In addition, obesity confers a poorer prognosis in MDS with inferior overall survival and a higher rate of AML transformation. In this study, we measured DNA methylation of the promoter for the obesity-regulated gene LEP, encoding leptin, in hematopoietic cells from ICUS, CCUS and MDS patients and healthy controls. We investigated whether LEP promoter methylation is an early event in the development of myeloid neoplasms and whether it is associated with clinical outcome. RESULTS: We found that blood cells of patients with ICUS, CCUS and MDS all have a significantly hypermethylated LEP promoter compared to healthy controls and that LEP hypermethylation is associated with anemia, increased bone marrow blast percentage, and lower plasma leptin levels. MDS patients with a high LEP promoter methylation have a higher risk of progression, shorter progression-free survival, and inferior overall survival. Furthermore, LEP promoter methylation was an independent risk factor for the progression of MDS in a multivariate Cox regression analysis. CONCLUSION: In conclusion, hypermethylation of the LEP promoter is an early and frequent event in myeloid neoplasms and is associated with a worse prognosis.


Subject(s)
Anemia , Leptin , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Aged , Humans , Anemia/genetics , Clonal Hematopoiesis , DNA Methylation , Leptin/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Obesity/genetics
2.
Nat Commun ; 12(1): 6061, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663818

ABSTRACT

Mutations in the epigenetic modifier TET2 are frequent in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). Here, we investigate associations between TET2 mutations and DNA methylation in whole blood in 305 elderly twins, 15 patients with CCUS and 18 healthy controls. We find that TET2 mutations are associated with DNA hypermethylation at enhancer sites in whole blood in CHIP and in both granulocytes and mononuclear cells in CCUS. These hypermethylated sites are associated with leukocyte function and immune response and ETS-related and C/EBP-related transcription factor motifs. While the majority of TET2-associated hypermethylation sites are shared between CHIP and in AML, we find a set of AML-specific hypermethylated loci at active enhancer elements in hematopoietic stem cells. In summary, we show that TET2 mutations is associated with hypermethylated enhancers involved in myeloid differentiation in both CHIP, CCUS and AML patients.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Enhancer Elements, Genetic , Hematopoiesis/genetics , Mutation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Hematopoietic Stem Cells , Humans , Myeloproliferative Disorders/genetics , Transcription Factors/genetics
3.
Hemasphere ; 5(8): e615, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34291194

ABSTRACT

Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called "niches." Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.

4.
Mol Oncol ; 14(5): 964-973, 2020 05.
Article in English | MEDLINE | ID: mdl-32133779

ABSTRACT

Patients with recurrent glioblastoma achieving response to bevacizumab combined with chemotherapy have clinical improvement and prolonged survival. High gene expression of angiotensinogen (AGT) is associated with a poor bevacizumab response. Because AGT expression is epigenetically regulated, we aimed to investigate whether AGT promoter methylation in tumor tissue predicts response to bevacizumab combination therapy in patients with recurrent glioblastoma. The study included 159 patients with recurrent glioblastoma, treated with bevacizumab combination treatment (training cohort, n = 77; validation cohort, n = 82). All patients could be evaluated for treatment response and biomarkers. DNA methylation of 4 CpG sites in the AGT promoter was measured using pyrosequencing. A model for nonresponse was established using logistic regression analysis. In the training cohort, lower methylation of each of the four CpG sites in the AGT promoter was significantly associated with nonresponse (all P < 0.05). Moreover, the mean methylation level of all four CpG sites was associated with an increased likelihood of not achieving response to bevacizumab combination therapy (twofold decrease: odds ratio = 3.01; 95% confidence interval: 1.41-6.44; P = 0.004). We developed a model for nonresponse in the training cohort, where a threshold of mean AGT promoter methylation levels was set to below 12%. The model could predict bevacizumab nonresponse with 96% specificity. Importantly, this predictor was also significantly associated with nonresponse in the validation cohort (P = 0.037). Taken together, our findings suggest that low AGT promoter methylation in tumor tissue predicts nonresponse to bevacizumab combination treatment in patients with recurrent glioblastoma. We have, thus, established and successfully validated a predictor for nonresponse that can be used to identify patients who will not benefit from bevacizumab combination therapy.


Subject(s)
Angiotensinogen/genetics , Angiotensinogen/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neoplasm Recurrence, Local/metabolism , Renin-Angiotensin System/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cohort Studies , CpG Islands , DNA Methylation , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Logistic Models , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...