Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 327(1): C213-C219, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38586876

ABSTRACT

Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SCs), the muscle stem cell population, also express molecular clock genes with several contractile-related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day and whether any such alterations led to different extents of eccentric contraction-induced injury. Using an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning: 0700 and afternoon: 1500). Morning-SC+ animals demonstrated ∼25%-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ∼30% less force-loss and ∼50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; P < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; P < 0.05). As Ca++ kinetics underpin force generation, we also evaluated caffeine-induced contracture force as an indirect marker of Ca++ availability and found similar force reductions in Morning-SC+ vs. SC- mice. We conclude that force production is reduced in the presence of SCs in the morning but not in the afternoon, suggesting that SCs may have a time-of-day influence over contractile function.NEW & NOTEWORTHY Muscle isometric torque fluctuates according to time-of-day with such variation owed to molecular clock regulation. Satellite cells (SCs) have recently demonstrated diurnal characteristics related to muscle physiology. In our work, force production was reduced in the presence versus absence of SCs in the morning but, not in the afternoon. Morning-SC+ animals, producing lower force, sustained lesser degrees of injury versus SC- counterparts. One potential mechanism underpinning lower forces produced appears to be lower calcium availability.


Subject(s)
Circadian Rhythm , Muscle Contraction , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Mice , Circadian Rhythm/physiology , Male , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Time Factors
2.
Am J Physiol Cell Physiol ; 324(6): C1332-C1340, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37184229

ABSTRACT

Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Cell Differentiation , Homeostasis , Muscle, Skeletal/metabolism , Circadian Clocks/physiology
3.
Am J Physiol Cell Physiol ; 324(3): C614-C631, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36622072

ABSTRACT

Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.


Subject(s)
Cerebral Palsy , Contracture , Satellite Cells, Skeletal Muscle , Humans , Child , Cerebral Palsy/pathology , Muscle, Skeletal/pathology , Contracture/pathology , Quadriceps Muscle/pathology , Satellite Cells, Skeletal Muscle/pathology
SELECTION OF CITATIONS
SEARCH DETAIL