Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39131402

ABSTRACT

Beta-arrestins (ßarrs) are key regulators and transducers of G-protein coupled receptor signaling; however, little is known of how ßarrs communicate with their downstream effectors. Here, we use cryo-electron microscopy to elucidate how ßarr1 recruits and activates non-receptor tyrosine kinase Src. ßarr1 binds Src SH3 domain via two distinct sites: a polyproline site in the N-domain and a non-proline site in the central crest region. At both sites ßarr1 interacts with the aromatic surface of SH3 which is critical for Src autoinhibition, suggesting that ßarr1 activates Src by SH3 domain displacement. Binding of SH3 to the central crest region induces structural rearrangements in the ß-strand V, finger, and middle loops of ßarr1 and interferes with ßarr1 coupling to the receptor core potentially impacting receptor desensitization and downstream signaling.

2.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972875

ABSTRACT

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Subject(s)
Endosomes , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Protein Transport , Receptors, Vasopressin , beta-Arrestins , Humans , beta-Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844230

ABSTRACT

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Subject(s)
Arrestins , Signal Transduction , beta-Arrestins/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Arrestins/metabolism , Allosteric Regulation , Signal Transduction/physiology , Receptors, G-Protein-Coupled/metabolism , Phosphorylation , beta-Arrestin 2/metabolism
4.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37432742

ABSTRACT

Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled ß2-adrenergic receptor (ß2AR) agonists (ß2-agonists) promote - with limited efficacy - bronchodilation in asthma. All ß2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a ß2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on ß2AR-mediated bronchoprotection. Consistent with our findings using human ß2ARs, Cmpd-6 allosterically potentiated ß2-agonist binding to guinea pig ß2ARs and downstream signaling of ß2ARs. In contrast, Cmpd-6 had no such effect on murine ß2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated ß2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of ß2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.


Subject(s)
Asthma , Humans , Mice , Animals , Guinea Pigs , Methacholine Chloride/pharmacology , Methacholine Chloride/therapeutic use , Ligands , Asthma/drug therapy , Asthma/genetics , Asthma/complications , Lung/metabolism , Binding Sites , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism
5.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35483373

ABSTRACT

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Subject(s)
Phosphopeptides , Receptors, G-Protein-Coupled , Phosphopeptides/metabolism , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , beta-Arrestins/metabolism
6.
J Biol Chem ; 297(6): 101369, 2021 12.
Article in English | MEDLINE | ID: mdl-34757127

ABSTRACT

G protein-coupled receptors (GPCRs) convert external stimuli into cellular signals through heterotrimeric guanine nucleotide-binding proteins (G-proteins) and ß-arrestins (ßarrs). In a ßarr-dependent signaling pathway, ßarrs link GPCRs to various downstream signaling partners, such as the Raf-mitogen-activated protein kinase extracellular signal-regulated kinase-extracellular signal-regulated kinase cascade. Agonist-stimulated GPCR-ßarr complexes have been shown to interact with C-Raf and are thought to initiate the mitogen-activated protein kinase pathway through simple tethering of these signaling partners. However, recent evidence shows that in addition to canonical scaffolding functions, ßarrs can allosterically activate downstream targets, such as the nonreceptor tyrosine kinase Src. Here, we demonstrate the direct allosteric activation of C-Raf by GPCR-ßarr1 complexes in vitro. Furthermore, we show that ßarr1 in complex with a synthetic phosphopeptide mimicking the human V2 vasopressin receptor tail that binds and functionally activates ßarrs also allosterically activates C-Raf. We reveal that the interaction between the phosphorylated GPCR C terminus and ßarr1 is necessary and sufficient for C-Raf activation. Interestingly, the interaction between ßarr1 and C-Raf was considerably reduced in the presence of excess activated H-Ras, a small GTPase known to activate C-Raf, suggesting that H-Ras and ßarr1 bind to the same region on C-Raf. Furthermore, we found that ßarr1 interacts with the Ras-binding domain of C-Raf. Taken together, these data suggest that in addition to canonical scaffolding functions, GPCR-ßarr complexes directly allosterically activate C-Raf by binding to its amino terminus. This work provides novel insights into how ßarrs regulate effector molecules to activate downstream signaling pathways.


Subject(s)
Proto-Oncogene Proteins c-raf/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Allosteric Regulation , Humans , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-raf/chemistry , Signal Transduction
7.
Mol Pharmacol ; 100(5): 513-525, 2021 11.
Article in English | MEDLINE | ID: mdl-34580163

ABSTRACT

Among ß-blockers that are clinically prescribed for heart failure, carvedilol is a first-choice agent with unique pharmacological properties. Carvedilol is distinct from other ß-blockers in its ability to elicit ß-arrestin-biased agonism, which has been suggested to underlie its cardioprotective effects. Augmenting the pharmacologic properties of carvedilol thus holds the promise of developing more efficacious and/or biased ß-blockers. We recently identified compound-6 (cmpd-6), the first small molecule positive allosteric modulator of the ß2-adrenergic receptor (ß2AR). Cmpd-6 is positively cooperative with orthosteric agonists at the ß2AR and enhances agonist-mediated transducer (G-protein and ß-arrestin) signaling in an unbiased manner. Here, we report that cmpd-6, quite unexpectedly, displays strong positive cooperativity only with carvedilol among a panel of structurally diverse ß-blockers. Cmpd-6 enhances the binding affinity of carvedilol for the ß2AR and augments its ability to competitively antagonize agonist-induced cAMP generation. Cmpd-6 potentiates ß-arrestin1- but not Gs-protein-mediated high-affinity binding of carvedilol at the ß2AR and ß-arrestin-mediated cellular functions in response to carvedilol including extracellular signal-regulated kinase phosphorylation, receptor endocytosis, and trafficking into lysosomes. Importantly, an analog of cmpd-6 that selectively retains positive cooperativity with carvedilol acts as a negative modulator of agonist-stimulated ß2AR signaling. These unprecedented cooperative properties of carvedilol and cmpd-6 have implications for fundamental understanding of G-protein-coupled receptor (GPCR) allosteric modulation, as well as for the development of more effective biased beta blockers and other GPCR therapeutics. SIGNIFICANCE STATEMENT: This study reports on the small molecule-mediated allosteric modulation of the ß-arrestin-biased ß-blocker, carvedilol. The small molecule, compound-6 (cmpd-6), displays an exclusive positive cooperativity with carvedilol among other ß-blockers and enhances the binding affinity of carvedilol for the ß2-adrenergic receptor. Cooperative effects of cmpd-6 augment the ß-blockade property of carvedilol while potentiating its ß-arrestin-mediated signaling functions. These findings have potential implications in advancing G-protein-coupled receptor allostery, developing biased therapeutics and remedying cardiovascular ailments.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Carvedilol/pharmacology , Receptors, Adrenergic, beta-2 , beta-Arrestins/pharmacology , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Carvedilol/chemistry , Carvedilol/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Receptors, Adrenergic, beta-2/metabolism , Sf9 Cells , beta-Arrestins/chemistry , beta-Arrestins/metabolism
8.
Mol Pharmacol ; 100(6): 568-579, 2021 12.
Article in English | MEDLINE | ID: mdl-34561298

ABSTRACT

ß 1 adrenergic receptors (ß 1ARs) are central regulators of cardiac function and a drug target for cardiac disease. As a member of the G protein-coupled receptor family, ß 1ARs activate cellular signaling by primarily coupling to Gs proteins to activate adenylyl cyclase, cAMP-dependent pathways, and the multifunctional adaptor-transducer protein ß-arrestin. Carvedilol, a traditional ß-blocker widely used in treating high blood pressure and heart failure by blocking ß adrenergic receptor-mediated G protein activation, can selectively stimulate Gs-independent ß-arrestin signaling of ß adrenergic receptors, a process known as ß-arrestin-biased agonism. Recently, a DNA-encoded small-molecule library screen against agonist-occupied ß 2 adrenergic receptors (ß 2ARs) identified Compound-6 (Cmpd-6) to be a positive allosteric modulator for agonists on ß 2ARs. Intriguingly, it was further discovered that Cmpd-6 is positively cooperative with the ß-arrestin-biased ligand carvedilol at ß 2ARs. Here we describe the surprising finding that at ß 1ARs unlike ß 2ARs, Cmpd-6 is cooperative only with carvedilol and not agonists. Cmpd-6 increases the binding affinity of carvedilol for ß 1ARs and potentiates carvedilol-stimulated, ß-arrestin-dependent ß 1AR signaling, such as epidermal growth factor receptor transactivation and extracellular signal-regulated kinase activation, whereas it does not have an effect on Gs-mediated cAMP generation. In vivo, Cmpd-6 enhances the antiapoptotic, cardioprotective effect of carvedilol in response to myocardial ischemia/reperfusion injury. This antiapoptotic role of carvedilol is dependent on ß-arrestins since it is lost in mice with myocyte-specific deletion of ß-arrestins. Our findings demonstrate that Cmpd-6 is a selective ß-arrestin-biased allosteric modulator of ß 1ARs and highlight its potential clinical utility in enhancing carvedilol-mediated cardioprotection against ischemic injury. SIGNIFICANCE STATEMENT: This study demonstrates the positive cooperativity of Cmpd-6 on ß1ARs as a ß-arrestin-biased positive allosteric modulator. Cmpd-6 selectively enhances the affinity and cellular signaling of carvedilol, a known ß-arrestin-biased ß-blocker for ß1ARs, whereas it has minimal effect on other ligands tested. Importantly, Cmpd-6 enhances the ß-arrestin-dependent in vivo cardioprotective effect of carvedilol during ischemia/reperfusion injury-induced apoptosis. The data support the potential therapeutic application of Cmpd-6 to enhance the clinical benefits of carvedilol in the treatment of cardiac disease.


Subject(s)
Cardiotonic Agents/pharmacology , Carvedilol/pharmacology , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism , beta-Arrestins/metabolism , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Allosteric Regulation , Animals , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Signal Transduction
9.
Science ; 371(6534)2021 03 12.
Article in English | MEDLINE | ID: mdl-33479120

ABSTRACT

Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are common drug targets and canonically couple to specific Gα protein subtypes and ß-arrestin adaptor proteins. G protein-mediated signaling and ß-arrestin-mediated signaling have been considered separable. We show here that GPCRs promote a direct interaction between Gαi protein subtype family members and ß-arrestins regardless of their canonical Gα protein subtype coupling. Gαi:ß-arrestin complexes bound extracellular signal-regulated kinase (ERK), and their disruption impaired both ERK activation and cell migration, which is consistent with ß-arrestins requiring a functional interaction with Gαi for certain signaling events. These results introduce a GPCR signaling mechanism distinct from canonical G protein activation in which GPCRs cause the formation of Gαi:ß-arrestin signaling complexes.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Cell Movement , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Signal Transduction
10.
Nat Commun ; 11(1): 4857, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978402

ABSTRACT

Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-ß2 adrenergic receptor/ß-arrestin-1(ß-arr1) membrane protein signaling complex, using only 5 µM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ß-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.


Subject(s)
Arrestin/chemistry , Arrestin/genetics , Arrestin/metabolism , Ligands , Proton Magnetic Resonance Spectroscopy/methods , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Phenylalanine , Protein Binding , Protein Conformation , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , beta-Arrestin 1/chemistry , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism
11.
Science ; 364(6447): 1283-1287, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31249059

ABSTRACT

Drugs targeting the orthosteric, primary binding site of G protein-coupled receptors are the most common therapeutics. Allosteric binding sites, elsewhere on the receptors, are less well-defined, and so less exploited clinically. We report the crystal structure of the prototypic ß2-adrenergic receptor in complex with an orthosteric agonist and compound-6FA, a positive allosteric modulator of this receptor. It binds on the receptor's inner surface in a pocket created by intracellular loop 2 and transmembrane segments 3 and 4, stabilizing the loop in an α-helical conformation required to engage the G protein. Structural comparison explains the selectivity of the compound for ß2- over the ß1-adrenergic receptor. Diversity in location, mechanism, and selectivity of allosteric ligands provides potential to expand the range of receptor drugs.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Phthalic Anhydrides/chemistry , Receptors, Adrenergic, beta-2/chemistry , Adrenergic beta-2 Receptor Agonists/pharmacology , Allosteric Regulation , Crystallography, X-Ray , Gain of Function Mutation , Humans , Phthalic Anhydrides/pharmacology , Receptors, Adrenergic, beta-2/genetics
13.
Mol Pharmacol ; 94(2): 850-861, 2018 08.
Article in English | MEDLINE | ID: mdl-29769246

ABSTRACT

Conventional drug discovery efforts at the ß2-adrenoceptor (ß2AR) have led to the development of ligands that bind almost exclusively to the receptor's hormone-binding orthosteric site. However, targeting the largely unexplored and evolutionarily unique allosteric sites has potential for developing more specific drugs with fewer side effects than orthosteric ligands. Using our recently developed approach for screening G protein-coupled receptors (GPCRs) with DNA-encoded small-molecule libraries, we have discovered and characterized the first ß2AR small-molecule positive allosteric modulators (PAMs)-compound (Cmpd)-6 [(R)-N-(4-amino-1-(4-(tert-butyl)phenyl)-4-oxobutan-2-yl)-5-(N-isopropyl-N-methylsulfamoyl)-2-((4-methoxyphenyl)thio)benzamide] and its analogs. We used purified human ß2ARs, occupied by a high-affinity agonist, for the affinity-based screening of over 500 million distinct library compounds, which yielded Cmpd-6. It exhibits a low micro-molar affinity for the agonist-occupied ß2AR and displays positive cooperativity with orthosteric agonists, thereby enhancing their binding to the receptor and ability to stabilize its active state. Cmpd-6 is cooperative with G protein and ß-arrestin1 (a.k.a. arrestin2) to stabilize high-affinity, agonist-bound active states of the ß2AR and potentiates downstream cAMP production and receptor recruitment of ß-arrestin2 (a.k.a. arrestin3). Cmpd-6 is specific for the ß2AR compared with the closely related ß1AR. Structure-activity studies of select Cmpd-6 analogs defined the chemical groups that are critical for its biologic activity. We thus introduce the first small-molecule PAMs for the ß2AR, which may serve as a lead molecule for the development of novel therapeutics. The approach described in this work establishes a broadly applicable proof-of-concept strategy for affinity-based discovery of small-molecule allosteric compounds targeting unique conformational states of GPCRs.


Subject(s)
Adrenergic beta-2 Receptor Agonists/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Small Molecule Libraries/pharmacology , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Drug Synergism , GTP-Binding Proteins/metabolism , Gene Library , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Substrate Specificity , beta-Arrestin 1/metabolism
14.
Bioorg Med Chem ; 26(9): 2320-2330, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29588128

ABSTRACT

The ß2-adrenergic receptor (ß2AR), a G protein-coupled receptor, is an important therapeutic target. We recently described Cmpd-15, the first small molecule negative allosteric modulator (NAM) for the ß2AR. Herein we report in details the design, synthesis and structure-activity relationships (SAR) of seven Cmpd-15 derivatives. Furthermore, we provide in a dose-response paradigm, the details of the effects of these derivatives in modulating agonist-induced ß2AR activities (G-protein-mediated cAMP production and ß-arrestin recruitment to the receptor) as well as the binding affinity of an orthosteric agonist in radio-ligand competition binding assay. Our results show that some modifications, including removal of the formamide group in the para-formamido phenylalanine region and bromine in the meta-bromobenzyl methylbenzamide region caused dramatic reduction in the functional activity of Cmpd-15. These SAR results provide valuable insights into the mechanism of action of the NAM Cmpd-15 as well as the basis for future development of more potent and selective modulators for the ß2AR based on the chemical scaffold of Cmpd-15.


Subject(s)
Adrenergic beta-2 Receptor Antagonists/pharmacology , Dipeptides/pharmacology , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-2 Receptor Antagonists/chemical synthesis , Adrenergic beta-2 Receptor Antagonists/chemistry , Allosteric Regulation , Allosteric Site/drug effects , Binding, Competitive , Cell Line, Tumor , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dose-Response Relationship, Drug , Drug Design , GTP-Binding Protein alpha Subunits, Gs/metabolism , HEK293 Cells , Humans , Iodine Radioisotopes , Iodocyanopindolol/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , beta-Arrestins/metabolism
15.
Elife ; 72018 02 02.
Article in English | MEDLINE | ID: mdl-29393851

ABSTRACT

Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and ß-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or ß-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that ß-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/ß-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fertility , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics
16.
Nature ; 548(7668): 480-484, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28813418

ABSTRACT

G-protein-coupled receptors (GPCRs) pose challenges for drug discovery efforts because of the high degree of structural homology in the orthosteric pocket, particularly for GPCRs within a single subfamily, such as the nine adrenergic receptors. Allosteric ligands may bind to less-conserved regions of these receptors and therefore are more likely to be selective. Unlike orthosteric ligands, which tonically activate or inhibit signalling, allosteric ligands modulate physiologic responses to hormones and neurotransmitters, and may therefore have fewer adverse effects. The majority of GPCR crystal structures published to date were obtained with receptors bound to orthosteric antagonists, and only a few structures bound to allosteric ligands have been reported. Compound 15 (Cmpd-15) is an allosteric modulator of the ß2 adrenergic receptor (ß2AR) that was recently isolated from a DNA-encoded small-molecule library. Orthosteric ß-adrenergic receptor antagonists, known as beta-blockers, are amongst the most prescribed drugs in the world and Cmpd-15 is the first allosteric beta-blocker. Cmpd-15 exhibits negative cooperativity with agonists and positive cooperativity with inverse agonists. Here we present the structure of the ß2AR bound to a polyethylene glycol-carboxylic acid derivative (Cmpd-15PA) of this modulator. Cmpd-15PA binds to a pocket formed primarily by the cytoplasmic ends of transmembrane segments 1, 2, 6 and 7 as well as intracellular loop 1 and helix 8. A comparison of this structure with inactive- and active-state structures of the ß2AR reveals the mechanism by which Cmpd-15 modulates agonist binding affinity and signalling.


Subject(s)
Adrenergic beta-2 Receptor Antagonists/chemistry , Adrenergic beta-2 Receptor Antagonists/pharmacology , Dipeptides/chemistry , Dipeptides/pharmacology , Intracellular Space , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Allosteric Site/drug effects , Allosteric Site/genetics , Conserved Sequence , Crystallography, X-Ray , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Models, Molecular , Mutagenesis , Propanolamines/chemistry , Propanolamines/pharmacology , Protein Conformation/drug effects , Protein Stability/drug effects , Receptors, Adrenergic, beta-2/genetics
17.
Proc Natl Acad Sci U S A ; 114(10): 2562-2567, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223524

ABSTRACT

ß-Arrestins (ßarrs) interact with G protein-coupled receptors (GPCRs) to desensitize G protein signaling, to initiate signaling on their own, and to mediate receptor endocytosis. Prior structural studies have revealed two unique conformations of GPCR-ßarr complexes: the "tail" conformation, with ßarr primarily coupled to the phosphorylated GPCR C-terminal tail, and the "core" conformation, where, in addition to the phosphorylated C-terminal tail, ßarr is further engaged with the receptor transmembrane core. However, the relationship of these distinct conformations to the various functions of ßarrs is unknown. Here, we created a mutant form of ßarr lacking the "finger-loop" region, which is unable to form the core conformation but retains the ability to form the tail conformation. We find that the tail conformation preserves the ability to mediate receptor internalization and ßarr signaling but not desensitization of G protein signaling. Thus, the two GPCR-ßarr conformations can carry out distinct functions.


Subject(s)
Endocytosis/genetics , Mutant Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry , Amino Acid Sequence/genetics , GTP-Binding Protein Regulators/genetics , HEK293 Cells , Humans , Molecular Conformation , Multiprotein Complexes , Mutant Proteins/genetics , Receptors, G-Protein-Coupled/genetics , beta-Arrestins/genetics
18.
Nat Commun ; 8: 14335, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181498

ABSTRACT

Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by ß-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a ß-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-ß-arrestin-1 signalling complex. Replacing the C-terminal region of ß-arrestin-1 with its counterpart on ß-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between ß-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes.


Subject(s)
Catecholamines/metabolism , Receptor, Angiotensin, Type 1/agonists , TRPC Cation Channels/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Animals , Calcium/metabolism , Estrenes/pharmacology , HEK293 Cells , Humans , Ligands , Mice, Knockout , Oligopeptides/pharmacology , Phospholipase C gamma/metabolism , Pyrrolidinones/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction/drug effects , beta-Arrestin 1/chemistry
19.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28130548

ABSTRACT

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , High-Throughput Screening Assays/methods , Receptors, Adrenergic, beta-2/metabolism , Small Molecule Libraries/pharmacology , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/metabolism , Animals , Binding Sites/genetics , Binding, Competitive/drug effects , DNA/genetics , Humans , Ligands , Molecular Structure , Mutation , Receptors, Adrenergic, beta-2/genetics , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Spodoptera
20.
Biol Psychiatry ; 81(8): 654-670, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27916196

ABSTRACT

BACKGROUND: Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. METHODS: We used specific ß-adrenergic agonists, as well as ß2-adrenergic receptor (ß2AR) and arrestin knockout models, to study the effects of adaptive ß2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. RESULTS: We observed that the duration of the adaptive ß2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged ß2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of ß2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, ß-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a ß-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of ß2ARs, which was responsible for its decreased beneficial effects. CONCLUSIONS: Our results not only revealed that ß-arrestin-1 regulated lactate metabolism to contribute to ß2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Lactic Acid/metabolism , Learning/physiology , Memory/physiology , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Stress, Psychological/metabolism , beta-Arrestin 1/metabolism , Adrenergic beta-2 Receptor Agonists/administration & dosage , Animals , Astrocytes/metabolism , Cell Line , Formoterol Fumarate/administration & dosage , Hippocampus/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Receptors, Adrenergic, beta-2/genetics , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL