Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 16(1): 76, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845031

ABSTRACT

Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Pedigree , Humans , DNA Methyltransferase 3A/genetics , Adult , Male , DNA (Cytosine-5-)-Methyltransferases/genetics , Female , Cardiomyopathies/genetics , Aortic Diseases/genetics , Exome Sequencing/methods , Intellectual Disability/genetics , Mutation
2.
Expert Opin Drug Discov ; 19(6): 649-670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715415

ABSTRACT

INTRODUCTION: Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED: In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION: The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.


Subject(s)
Drug Design , Drug Discovery , Proteins , Ligands , Proteins/metabolism , Humans , Drug Discovery/methods , Drug Design/methods , Protein Binding , High-Throughput Screening Assays/methods
3.
Eur J Med Chem ; 273: 116505, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38788300

ABSTRACT

Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.


Subject(s)
Drug Design , HSP90 Heat-Shock Proteins , Imidazoles , Resorcinols , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Resorcinols/chemistry , Resorcinols/pharmacology , Resorcinols/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Molecular Dynamics Simulation , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL