Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Pharmacol Biochem Behav ; 239: 173755, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527654

INTRODUCTION: One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS: Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS: Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION: PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.


Glutamate Decarboxylase , Hippocampus , Interneurons , Kindling, Neurologic , Pentylenetetrazole , Somatostatin , Animals , Male , Glutamate Decarboxylase/metabolism , Kindling, Neurologic/drug effects , Kindling, Neurologic/metabolism , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Interneurons/metabolism , Somatostatin/metabolism , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/metabolism
2.
Brain Behav ; 14(1): e3354, 2024 01.
Article En | MEDLINE | ID: mdl-38376048

INTRODUCTION: Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD. We hypothesized that the olfactory deficit in AD is caused by the loss of drebrin from the spine. METHODS: To verify this hypothesis, we performed the buried food test in two types of drebrin knockout mice, such as drebrin-double (E and A) knockout (DXKO) mice, and drebrin A-specific knockout (DAKO) mice. RESULTS: The DXKO mice spent a significantly longer time to find food compared with the wild-type (WT) littermates. In contrast, the DAKO mice, in which drebrin E rather than drebrin A is expressed in the postsynaptic sites of mature neurons, spent an equivalent time trying to find food compared to that of the WT. The DXKO mice showed comparable food motivation and sensory functions other than olfaction, including visual and auditory functions. CONCLUSION: These results indicate that drebrin is necessary for normal olfactory function. Further study is needed to determine whether it is necessary for normal olfaction to express drebrin E during the developmental stage or to have drebrin (whether E or A) present after maturation.


Alzheimer Disease , Neuropeptides , Olfaction Disorders , Animals , Humans , Mice , Alzheimer Disease/metabolism , Mice, Knockout , Neurons/metabolism , Olfaction Disorders/genetics
3.
Front Behav Neurosci ; 15: 750869, 2021.
Article En | MEDLINE | ID: mdl-34803625

Gamma-aminobutyric acid (GABA), a major inhibitory transmitter in the central nervous system, is synthesized via either of two enzyme isoforms, GAD65 or GAD67. GAD65 is synthesized in the soma but functions at synaptic terminals in an activity-dependent manner, playing a distinct role in excitatory-inhibitory balance. However, the extent to which each GABAergic subtype expresses GAD65 in the resting state remains unclear. In this study, we compared GAD65 expression among six GABAergic subtypes: NPY+, nNOS+, PV+, SOM+, CR+, and CCK+. According to the results, the GABAergic subtypes were classified into two groups per region based on GAD65 expression levels: high-expression (NPY+ and nNOS+) and low-expression groups (PV+, SOM+, CR+, and CCK+) in the cerebral cortex and high-expression (NPY+, nNOS+, and CCK+) and low-expression groups (PV+, SOM+, and CR+) in the hippocampus. Moreover, these expression patterns revealed a distinct laminar distribution in the cerebral cortex and hippocampus. To investigate the extent of GAD65 transport from the soma to synaptic terminals, we examined GAD65 expression in colchicine-treated rats in which GAD65 was synthesized in the soma but not transported to terminals. We found a significant positive correlation in GAD65 expression across subtypes between colchicine-treated and control rats. In summary, each GABAergic subtype exhibits a distinct GAD65 expression pattern across layers of the cerebral cortex and hippocampus. In addition, the level of GAD65 expression in the soma can be used as a proxy for the amount of GAD65 in the cytoplasm. These findings suggest that exploration of the distinct profiles of GAD65 expression among GABAergic subtypes could clarify the roles that GABAergic subtypes play in maintaining the excitatory-inhibitory balance.

4.
Transl Psychiatry ; 10(1): 426, 2020 12 08.
Article En | MEDLINE | ID: mdl-33293518

GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.


Schizophrenia , Adult , Animals , Brain/metabolism , CRISPR-Cas Systems , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hippocampus/metabolism , Humans , Rats , Schizophrenia/genetics
5.
Eur J Neurosci ; 46(6): 2214-2228, 2017 Sep.
Article En | MEDLINE | ID: mdl-28833685

F-actin-binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin-null-mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.


Cell Movement , Cell Proliferation , Lateral Ventricles/cytology , Neural Stem Cells/metabolism , Neurogenesis , Neuropeptides/metabolism , Animals , Lateral Ventricles/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neuropeptides/genetics , Olfactory Bulb/cytology , Olfactory Bulb/metabolism
...