Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Biophys J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38605520

ABSTRACT

The Na+-activated K+ channel KNa1.1, encoded by the KCNT1 gene, is an important regulator of neuronal excitability. How intracellular Na+ ions bind and increase channel activity is not well understood. Analysis of KNa1.1 channel structures indicate that there is a large twisting of the ßN-αQ loop in the intracellular RCK2 domain between the inactive and Na+-activated conformations, with a lysine (K885, human subunit numbering) close enough to potentially form a salt bridge with an aspartate (D839) in ßL in the Na+-activated state. Concurrently, an aspartate (D884) adjacent in the same loop adopts a position within a pocket formed by the ßO strand. In carrying out mutagenesis and electrophysiology with human KNa1.1, we found that alanine substitution of selected residues in these regions resulted in almost negligible currents in the presence of up to 40 mM intracellular Na+. The exception was D884A, which resulted in constitutively active channels in both the presence and absence of intracellular Na+. Further mutagenesis of this site revealed an amino acid size-dependent effect. Substitutions at this site by an amino acid smaller than aspartate (D884V) also yielded constitutively active KNa1.1, and D884I had Na+ dependence similar to wild-type KNa1.1, while increasing the side-chain size larger than aspartate (D884E or D884F) yielded channels that could not be activated by up to 40 mM intracellular Na+. We conclude that Na+ binding results in a conformational change that accommodates D884 in the ßO pocket, which triggers further conformational changes in the RCK domains and channel activation.

2.
Nat Chem ; 15(12): 1754-1764, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37710048

ABSTRACT

Biological membranes consist of two leaflets of phospholipid molecules that form a bilayer, each leaflet comprising a distinct lipid composition. This asymmetry is created and maintained in vivo by dedicated biochemical pathways, but difficulties in creating stable asymmetric membranes in vitro have restricted our understanding of how bilayer asymmetry modulates the folding, stability and function of membrane proteins. In this study, we used cyclodextrin-mediated lipid exchange to generate liposomes with asymmetric bilayers and characterize the stability and folding kinetics of two bacterial outer membrane proteins (OMPs), OmpA and BamA. We found that excess negative charge in the outer leaflet of a liposome impedes their insertion and folding, while excess negative charge in the inner leaflet accelerates their folding relative to symmetric liposomes with the same membrane composition. Using molecular dynamics, mutational analysis and bioinformatics, we identified a positively charged patch critical for folding and stability. These results rationalize the well-known 'positive-outside' rule of OMPs and suggest insights into the mechanisms that drive OMP folding and assembly in vitro and in vivo.


Subject(s)
Escherichia coli Proteins , Liposomes , Liposomes/metabolism , Protein Folding , Escherichia coli Proteins/chemistry , Bacterial Outer Membrane Proteins/chemistry , Lipids , Lipid Bilayers/chemistry
3.
Sci Rep ; 12(1): 21121, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476673

ABSTRACT

The membrane-bound lymphocyte-specific protein-tyrosine kinase (Lck) triggers T cell antigen receptor signalling to initiate adaptive immune responses. Despite many structure-function studies, the mode of action of Lck and the potential role of plasma membrane lipids in regulating Lck's activity remains elusive. Advances in molecular dynamics simulations of membrane proteins in complex lipid bilayers have opened a new perspective in gathering such information. Here, we have modelled the full-length Lck open and closed conformations  using data available from different crystalographic studies and simulated its interaction with the inner leaflet of the T cell plasma membrane. In both conformations, we found that the unstructured unique domain and the structured domains including the kinase interacted with the membrane with a preference for PIP lipids. Interestingly, our simulations suggest that the Lck-SH2 domain interacts with lipids differently in the open and closed Lck conformations, demonstrating that lipid interaction can potentially regulate Lck's conformation and in turn modulate T cell signalling. Additionally, the Lck-SH2 and kinase domain residues that significantly contacted PIP lipids are found to be conserved among the Src family of kinases, thereby potentially representing similar PIP interactions within the family.


Subject(s)
Membrane Lipids , Molecular Dynamics Simulation , Lymphocytes
4.
PLoS Comput Biol ; 18(10): e1010578, 2022 10.
Article in English | MEDLINE | ID: mdl-36191052

ABSTRACT

Membrane-integral pyrophosphatases (mPPases) are membrane-bound enzymes responsible for hydrolysing inorganic pyrophosphate and translocating a cation across the membrane. Their function is essential for the infectivity of clinically relevant protozoan parasites and plant maturation. Recent developments have indicated that their mechanism is more complicated than previously thought and that the membrane environment may be important for their function. In this work, we use multiscale molecular dynamics simulations to demonstrate for the first time that mPPases form specific anionic lipid interactions at 4 sites at the distal and interfacial regions of the protein. These interactions are conserved in simulations of the mPPases from Thermotoga maritima, Vigna radiata and Clostridium leptum and characterised by interactions with positive residues on helices 1, 2, 3 and 4 for the distal site, or 9, 10, 13 and 14 for the interfacial site. Due to the importance of these helices in protein stability and function, these lipid interactions may play a crucial role in the mPPase mechanism and enable future structural and functional studies.


Subject(s)
Diphosphates , Pyrophosphatases , Cations/metabolism , Cell Membrane/metabolism , Diphosphates/metabolism , Lipids , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism
5.
Sci Adv ; 8(27): eabn6992, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857458

ABSTRACT

Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphate (PIP) lipids. Several family members are linked to diseases including cancer. We report the systematic simulation of the interactions of 100 mammalian PH domains with PIP-containing membranes. The observed PIP interaction hotspots recapitulate crystallographic binding sites and reveal a number of insights: (i) The ß1 and ß2 strands and their connecting loop constitute the primary PIP interaction site but are typically supplemented by interactions at the ß3-ß4 and ß5-ß6 loops; (ii) we reveal exceptional cases such as the Exoc8 PH domain; (iii) PH domains adopt different membrane-bound orientations and induce clustering of anionic lipids; and (iv) beyond family-level insights, our dataset sheds new light on individual PH domains, e.g., by providing molecular detail of secondary PIP binding sites. This work provides a global view of PH domain/membrane association involving multivalent association with anionic lipids.

6.
Structure ; 30(9): 1354-1365.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35700726

ABSTRACT

Fibronectin Leucine-rich Repeat Transmembrane (FLRT 1-3) proteins are a family of broadly expressed single-spanning transmembrane receptors that play key roles in development. Their extracellular domains mediate homotypic cell-cell adhesion and heterotypic protein interactions with other receptors to regulate cell adhesion and guidance. These in trans FLRT interactions determine the formation of signaling complexes of varying complexity and function. Whether FLRTs also interact at the surface of the same cell, in cis, remains unknown. Here, molecular dynamics simulations reveal two dimerization motifs in the FLRT2 transmembrane helix. Single particle tracking experiments show that these Small-X3-Small motifs synergize with a third dimerization motif encoded in the extracellular domain to permit the cis association and co-diffusion patterns of FLRT2 receptors on cells. These results may point to a competitive switching mechanism between in cis and in trans interactions, which suggests that homotypic FLRT interaction mirrors the functionalities of classic adhesion molecules.


Subject(s)
Cell Adhesion Molecules , Membrane Glycoproteins , Cell Adhesion/physiology , Cell Adhesion Molecules/metabolism , Dimerization , Membrane Glycoproteins/chemistry , Signal Transduction
7.
Sci Adv ; 8(25): eabp9688, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35749497

ABSTRACT

PLCγ enzymes are autoinhibited in resting cells and form key components of intracellular signaling that are also linked to disease development. Insights into physiological and aberrant activation of PLCγ require understanding of an active, membrane-bound form, which can hydrolyze inositol-lipid substrates. Here, we demonstrate that PLCγ1 cannot bind membranes unless the autoinhibition is disrupted. Through extensive molecular dynamics simulations and experimental evidence, we characterize membrane binding by the catalytic core domains and reveal previously unknown sites of lipid interaction. The identified sites act in synergy, overlap with autoinhibitory interfaces, and are shown to be critical for the phospholipase activity in cells. This work provides direct evidence that PLCγ1 is inhibited through obstruction of its membrane-binding surfaces by the regulatory region and that activation must shift PLCγ1 to a conformation competent for membrane binding. Knowledge of the critical sites of membrane interaction extends the mechanistic framework for activation, dysregulation, and therapeutic intervention.


Subject(s)
Lipids , Signal Transduction , Catalytic Domain
8.
Front Physiol ; 13: 817945, 2022.
Article in English | MEDLINE | ID: mdl-35283786

ABSTRACT

Molecular dynamics (MD) simulations have provided new insights into the organization and dynamics of the red blood cell Band 3 anion exchanger (AE1, SLC4A1). Band 3, like many solute carriers, works by an alternating access mode of transport where the protein rapidly (104/s) changes its conformation between outward and inward-facing states via a transient occluded anion-bound intermediate. While structural studies of membrane proteins usually reveal valuable structural information, these studies provide a static view often in the presence of detergents. Membrane transporters are embedded in a lipid bilayer and associated lipids play a role in their folding and function. In this review, we highlight MD simulations of Band 3 in realistic lipid bilayers that revealed specific lipid and protein interactions and were used to re-create a model of the Wright (Wr) blood group antigen complex of Band 3 and Glycophorin A. Current MD studies of Band 3 and related transporters are focused on describing the trajectory of substrate binding and translocation in real time. A structure of the intact Band 3 protein has yet to be achieved experimentally, but cryo-electron microscopy in combination with MD simulations holds promise to capture the conformational changes associated with anion transport in exquisite molecular detail.

9.
Structure ; 30(4): 608-622.e5, 2022 04 07.
Article in English | MEDLINE | ID: mdl-34986323

ABSTRACT

The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.


Subject(s)
Escherichia coli Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Ion Channels/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation
11.
Cell Rep ; 36(2): 109375, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260912

ABSTRACT

The mechanism of T cell antigen receptor (TCR-CD3) signaling remains elusive. Here, we identify mutations in the transmembrane region of TCRß or CD3ζ that augment peptide T cell antigen receptor (pMHC)-induced signaling not explicable by enhanced ligand binding, lateral diffusion, clustering, or co-receptor function. Using a biochemical assay and molecular dynamics simulation, we demonstrate that the gain-of-function mutations loosen the interaction between TCRαß and CD3ζ. Similar to the activating mutations, pMHC binding reduces TCRαß cohesion with CD3ζ. This event occurs prior to CD3ζ phosphorylation and at 0°C. Moreover, we demonstrate that soluble monovalent pMHC alone induces signaling and reduces TCRαß cohesion with CD3ζ in membrane-bound or solubilised TCR-CD3. Our data provide compelling evidence that pMHC binding suffices to activate allosteric changes propagating from TCRαß to the CD3 subunits, reconfiguring interchain transmembrane region interactions. These dynamic modifications could change the arrangement of TCR-CD3 boundary lipids to license CD3ζ phosphorylation and initiate signal propagation.


Subject(s)
Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Allosteric Regulation , Gain of Function Mutation/genetics , HEK293 Cells , Humans , Ligands , Major Histocompatibility Complex , Phosphorylation , Protein Multimerization , Protein Structure, Quaternary , Solubility
12.
PLoS Comput Biol ; 17(7): e1009232, 2021 07.
Article in English | MEDLINE | ID: mdl-34280187

ABSTRACT

The T cell receptor (TCR-CD3) initiates T cell activation by binding to peptides of Major Histocompatibility Complexes (pMHC). The TCR-CD3 topology is well understood but the arrangement and dynamics of its cytoplasmic tails remains unknown, limiting our grasp of the signalling mechanism. Here, we use molecular dynamics simulations and modelling to investigate the entire TCR-CD3 embedded in a model membrane. Our study demonstrates conformational changes in the extracellular and transmembrane domains, and the arrangement of the TCR-CD3 cytoplasmic tails. The cytoplasmic tails formed highly interlaced structures while some tyrosines within the immunoreceptor tyrosine-based activation motifs (ITAMs) penetrated the hydrophobic core of the membrane. Interactions between the cytoplasmic tails and phosphatidylinositol phosphate lipids in the inner membrane leaflet led to the formation of a distinct anionic lipid fingerprint around the TCR-CD3. These results increase our understanding of the TCR-CD3 dynamics and the importance of membrane lipids in regulating T cell activation.


Subject(s)
Models, Molecular , Receptor-CD3 Complex, Antigen, T-Cell/chemistry , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Computational Biology , Computer Simulation , Cryoelectron Microscopy , Cytoplasm/chemistry , Cytoplasm/metabolism , Humans , Lymphocyte Activation , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Protein Conformation , Protein Interaction Domains and Motifs , Receptor-CD3 Complex, Antigen, T-Cell/ultrastructure , Static Electricity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
Biophys J ; 120(8): 1510-1521, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33582135

ABSTRACT

Piezo1 is a mechanosensitive channel involved in many cellular functions and responsible for sensing shear stress and pressure forces in cells. Piezo1 has a unique trilobed topology with a curved membrane region in the closed state. It has been suggested that upon activation Piezo1 adopts a flattened conformation, but the molecular and structural changes underpinning the Piezo1 gating and opening mechanisms and how the channel senses forces in the membrane remain elusive. Here, we used molecular dynamics simulations to reveal the structural rearrangements that occur when Piezo1 moves from a closed to an open state in response to increased mechanical tension applied to a model membrane. We find that membrane stretching causes Piezo1 to flatten and expand its blade region, resulting in tilting and lateral movement of the pore-lining transmembrane helices 37 and 38. This is associated with the opening of the channel and movement of lipids out of the pore region. Our results reveal that because of the rather loose packing of Piezo1 pore region, movement of the lipids outside the pore region is critical for the opening of the pore. Our simulations also suggest synchronous flattening of the Piezo1 blades during Piezo1 activation. The flattened structure lifts the C-terminal extracellular domain up, exposing it more to the extracellular space. Our studies support the idea that it is the blade region of Piezo1 that senses tension in the membrane because pore opening failed in the absence of the blades. Additionally, our simulations reveal that upon opening, water molecules occupy lateral fenestrations in the cytosolic region of Piezo1, which might be likely paths for ion permeation. Our results provide a model for how mechanical force opens the Piezo1 channel and thus how it might couple mechanical force to biological response.


Subject(s)
Ion Channel Gating , Ion Channels , Ion Channels/genetics , Ion Channels/metabolism , Mechanotransduction, Cellular , Molecular Dynamics Simulation , Protein Structure, Secondary
14.
Biophys J ; 120(8): 1343-1356, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33582137

ABSTRACT

Piezo1 forms a mechanically activated calcium-permeable nonselective cation channel that is functionally important in many cell types. Structural data exist for C-terminal regions, but we lack information about N-terminal regions and how the entire channel interacts with the lipid bilayer. Here, we use computational approaches to predict the three-dimensional structure of the full-length Piezo1 and simulate it in an asymmetric membrane. A number of novel insights are suggested by the model: 1) Piezo1 creates a trilobed dome in the membrane that extends beyond the radius of the protein, 2) Piezo1 changes the lipid environment in its vicinity via preferential interactions with cholesterol and phosphatidylinositol 4,5-bisphosphate (PIP2) molecules, and 3) cholesterol changes the depth of the dome and PIP2 binding preference. In vitro alteration of cholesterol concentration inhibits Piezo1 activity in a manner complementing some of our computational findings. The data suggest the importance of N-terminal regions of Piezo1 for dome structure and membrane cholesterol and PIP2 interactions.


Subject(s)
Ion Channels , Lipid Bilayers , Cholesterol , Ion Channels/genetics , Phosphatidylinositols
15.
Commun Biol ; 3(1): 766, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318620

ABSTRACT

The ß-barrel assembly machinery (BAM) catalyses the folding and insertion of ß-barrel outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria by mechanisms that remain unclear. Here, we present an ensemble of cryoEM structures of the E. coli BamABCDE (BAM) complex in lipid nanodiscs, determined using multi-body refinement techniques. These structures, supported by single-molecule FRET measurements, describe a range of motions in the BAM complex, mostly localised within the periplasmic region of the major subunit BamA. The ß-barrel domain of BamA is in a 'lateral open' conformation in all of the determined structures, suggesting that this is the most energetically favourable species in this bilayer. Strikingly, the BAM-containing lipid nanodisc is deformed, especially around BAM's lateral gate. This distortion is also captured in molecular dynamics simulations, and provides direct structural evidence for the lipid 'disruptase' activity of BAM, suggested to be an important part of its functional mechanism.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Lipid Bilayers , Lipids , Molecular Dynamics Simulation , Multiprotein Complexes/chemistry , Nanostructures , Protein Multimerization , Bacterial Outer Membrane Proteins/metabolism , Catalysis , Multiprotein Complexes/metabolism , Protein Conformation , Protein Folding , Proteolipids/metabolism
16.
Cell Rep ; 33(1): 108225, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027663

ABSTRACT

Endogenous PIEZO1 channels of native endothelium lack the hallmark inactivation often seen when these channels are overexpressed in cell lines. Because prior work showed that the force of shear stress activates sphingomyelinase in endothelium, we considered if sphingomyelinase is relevant to endogenous PIEZO1. Patch clamping was used to quantify PIEZO1-mediated signals in freshly isolated murine endothelium exposed to the mechanical forces caused by shear stress and membrane stretch. Neutral sphingomyelinase inhibitors and genetic disruption of sphingomyelin phosphodiesterase 3 (SMPD3) cause PIEZO1 to switch to profoundly inactivating behavior. Ceramide (a key product of SMPD3) rescues non-inactivating channel behavior. Its co-product, phosphoryl choline, has no effect. In contrast to ceramide, sphingomyelin (the SMPD3 substrate) does not affect inactivation but alters channel force sensitivity. The data suggest that sphingomyelinase activity, ceramide, and sphingomyelin are determinants of native PIEZO gating that enable sustained activity.


Subject(s)
Ion Channels/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Humans , Mice
17.
Nat Commun ; 11(1): 2155, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358557

ABSTRACT

The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Molecular Chaperones/metabolism , Peptidylprolyl Isomerase/metabolism , Bacterial Outer Membrane Proteins/genetics , Binding Sites , Carrier Proteins/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Mass Spectrometry , Molecular Chaperones/genetics , Peptidylprolyl Isomerase/genetics , Protein Binding
19.
Sci Adv ; 6(8): eaay5736, 2020 02.
Article in English | MEDLINE | ID: mdl-32128410

ABSTRACT

Association of peripheral proteins with lipid bilayers regulates membrane signaling and dynamics. Pleckstrin homology (PH) domains bind to phosphatidylinositol phosphate (PIP) molecules in membranes. The effects of local PIP enrichment on the interaction of PH domains with membranes is unclear. Molecular dynamics simulations allow estimation of the binding energy of GRP1 PH domain to PIP3-containing membranes. The free energy of interaction of the PH domain with more than two PIP3 molecules is comparable to experimental values, suggesting that PH domain binding involves local clustering of PIP molecules within membranes. We describe a mechanism of PH binding proceeding via an encounter state to two bound states which differ in the orientation of the protein relative to the membrane, these orientations depending on the local PIP concentration. These results suggest that nanoscale clustering of PIP molecules can control the strength and orientation of PH domain interaction in a concentration-dependent manner.


Subject(s)
Binding Sites , Cell Membrane/chemistry , Lipids/chemistry , Phosphatidylinositols/chemistry , Pleckstrin Homology Domains , Algorithms , Cell Membrane/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Models, Theoretical , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism
20.
Front Mol Biosci ; 6: 132, 2019.
Article in English | MEDLINE | ID: mdl-31824962

ABSTRACT

Membrane integral pyrophosphatases (mPPases) are responsible for the hydrolysis of pyrophosphate. This enzymatic mechanism is coupled to the pumping of H+ or Na+ across membranes in a process that can be K+ dependent or independent. Understanding the movements and dynamics throughout the mPPase catalytic cycle is important, as this knowledge is essential for improving or impeding protein function. mPPases have been shown to play a crucial role in plant maturation and abiotic stress tolerance, and so have the potential to be engineered to improve plant survival, with implications for global food security. mPPases are also selectively toxic drug targets, which could be pharmacologically modulated to reduce the virulence of common human pathogens. The last few years have seen the publication of many new insights into the function and structure of mPPases. In particular, there is a new body of evidence that the catalytic cycle is more complex than originally proposed. There are structural and functional data supporting a mechanism involving half-of-the-sites reactivity, inter-subunit communication, and exit channel motions. A more advanced and in-depth understanding of mPPases has begun to be uncovered, leaving the field of research with multiple interesting avenues for further exploration and investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...