Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 12(29): e2301396, 2023 11.
Article in English | MEDLINE | ID: mdl-37449943

ABSTRACT

A functional limbal epithelial stem cells (LSC) niche is a vital element in the regular renewal of the corneal epithelium by LSCs and maintenance of good vision. However, little is known about its unique structure and mechanical properties on LSC regulation, creating a significant gap in development of LSC-based therapies. Herein, the effect of mechanical and architectural elements of the niche on human pluripotent derived LSCs (hPSC-LSC) phenotype and growth is investigated in vitro. Specifically, three formulations of polyacrylamide gels with different controlled stiffnesses are used for culture and characterization of hPSC-LSCs from different stages of differentiation. In addition, limbal mimicking topography in polydimethylsiloxane is utilized for culturing hPSC-LSCs at early time point of differentiation. For comparison, the expression of selected key proteins of the corneal cells is analyzed in their native environment through whole mount staining of human donor corneas. The results suggest that mechanical response and substrate preference of the cells is highly dependent on their developmental stage. In addition, data indicate that cells may carry possible mechanical memory from previous culture matrix, both highlighting the importance of mechanical design of a functional in vitro limbus model.


Subject(s)
Limbus Corneae , Stem Cells , Humans , Limbus Corneae/metabolism , Cornea , Phenotype , Cell Differentiation
2.
Front Neurosci ; 17: 1110083, 2023.
Article in English | MEDLINE | ID: mdl-37056304

ABSTRACT

Introduction: In the core of a brain infarct, perfusion is severely impeded, and neuronal death occurs within minutes. In the penumbra, an area near the core with more remaining perfusion, cells initially remain viable, but activity is significantly reduced. In principle, the penumbra can be saved if reperfusion is established on time, making it a promising target for treatment. In vitro models with cultured neurons on microelectrode arrays (MEAs) provide a useful tool to investigate how ischemic stroke affects neuronal functioning. These models tend to be uniform, focusing on the isolated penumbra, and typically lack adjacent regions such as a core and unaffected regions (normal perfusion). However, processes in these regions may affect neuronal functioning and survival in the penumbra. Materials and methods: Here, we designed, fabricated, and characterized a cytocompatible device that generates an oxygen gradient across in vitro neuronal cultures to expose cells to hypoxia of various depths from near anoxia to near normoxia. This marks a step in the path to mimic core, penumbra, and healthy tissue, and will facilitate better in vitro modeling of ischemic stroke. Results: The generator forms a stable and reproducible gradient within 30 min. Oxygen concentrations at the extremes are adjustable in a physiologically relevant range. Application of the generator did not negatively affect electrophysiological recordings or the viability of cultures, thus confirming the cytocompatibility of the device. Discussion: The developed device is able to impose an oxygen gradient on neuronal cultures and may enrich in vitro stroke models.

3.
Stem Cells Int ; 2022: 9438281, 2022.
Article in English | MEDLINE | ID: mdl-36579142

ABSTRACT

Ischemic heart disease is the most common cardiovascular disease and a major burden for healthcare worldwide. However, its pathophysiology is still not fully understood, and human-based models for disease mechanisms and treatments are needed. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to model acute ischemia-reperfusion in our novel cell culture assembly. The assembly enables exchange of oxygen partial pressure for the cells within minutes, mimicking acute ischemic event. In this study, hypoxia was induced using 0% O2 gas for three hours and reoxygenation with 19% O2 gas for 24 hours in serum- and glucose-free medium. According to electrophysiological recordings, hypoxia decreased the hiPSC-CM-beating frequency and field potential (FP) amplitude. Furthermore, FP depolarization time and propagation slowed down. Most of the electrophysiological changes reverted during reoxygenation. However, immunocytochemical staining of the hypoxic and reoxygenation samples showed that morphological changes and changes in the sarcomere structure did not revert during reoxygenation but further deteriorated. qPCR results showed no significant differences in apoptosis or stress-related genes or in the expression of glycolytic genes. In conclusion, the hiPSC-CMs reproduced many characteristic changes of adult CMs during ischemia and reperfusion, indicating their usefulness as a human-based model of acute cardiac ischemia-reperfusion.

4.
Biomed Microdevices ; 24(4): 34, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36269438

ABSTRACT

Hypoxia is a condition where tissue oxygen levels fall below normal levels. In locally induced hypoxia due to blood vessel blockage, oxygen delivery becomes compromised. The site where blood flow is diminished the most forms a zero-oxygen core, and different oxygenation zones form around this core with varying oxygen concentrations. Naturally, these differing oxygen microenvironments drive cells to respond according to their oxygenation status. To study these cellular processes in laboratory settings, the cellular gas microenvironments should be controlled rapidly and precisely. In this study, we propose an organ-on-a-chip device that provides control over the oxygen environments in three separate compartments as well as the possibility of rapidly changing the corresponding oxygen concentrations. The proposed device includes a microfluidic channel structure with three separate arrays of narrow microchannels that guide gas mixtures with desired oxygen concentrations to diffuse through a thin gas-permeable membrane into cell culture areas. The proposed microfluidic channel structure is characterized using a 2D ratiometric oxygen imaging system, and the measurements confirm that the oxygen concentrations at the cell culture surface can be modulated in a few minutes. The structure is capable of creating hypoxic oxygen tension, and distinct oxygen environments can be generated simultaneously in the three compartments. By combining the microfluidic channel structure with an open-well coculture device, multicellular cultures can be established together with compartmentalized oxygen environment modulation. We demonstrate that the proposed compartmentalized organ-on-a-chip structure is suitable for cell culture.


Subject(s)
Microfluidic Analytical Techniques , Oxygen , Humans , Oxygen/chemistry , Lab-On-A-Chip Devices , Cell Culture Techniques , Hypoxia
5.
PLoS One ; 17(6): e0268570, 2022.
Article in English | MEDLINE | ID: mdl-35657824

ABSTRACT

It is well established that mechanical cues, e.g., tensile- compressive- or shear forces, are important co-regulators of cell and tissue physiology. To understand the mechanistic effects these cues have on cells, technologies allowing precise mechanical manipulation of the studied cells are required. As the significance of cell density i.e., packing on cellular behavior is beginning to unravel, we sought to design an equiaxial cell compression device based on our previously published cell stretching system. We focused on improving the suitability for microscopy and the user-friendliness of the system. By introducing a hinge structure to the substrate stretch generating vacuum chamber, we managed to decrease the z-displacement of the cell culture substrate, thus reducing the focal plane drift. The vacuum battery, the mini-incubator, as well as the custom-made vacuum pressure controller make the experimental setup more flexible and portable. Furthermore, we improved the efficiency and repeatability of manufacture of the device by designing a mold that can be used to cast the body of the device. We also compared several different silicone membranes, and chose SILPURAN® due to its best microscopy imaging properties. Here, we show that the device can produce a maximum 8.5% radial pre-strain which leads to a 15% equiaxial areal compression as the pre-strain is released. When tested with epithelial cells, upon compression, we saw a decrease in cell cross-sectional area and an increase in cell layer height. Additionally, before compression the cells had two distinct cell populations with different cross-sectional areas that merged into a more uniform population due to compression. In addition to these morphological changes, we detected an alteration in the nucleo-cytoplasmic distribution of YAP1, suggesting that the cellular packing is enough to induce mechanical signaling in the epithelium.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Cell Culture Techniques/methods , Mechanotransduction, Cellular , Stress, Mechanical
6.
FEBS J ; 289(17): 5180-5197, 2022 09.
Article in English | MEDLINE | ID: mdl-35263507

ABSTRACT

Methionine 1 (M1)-linked ubiquitination plays a key role in the regulation of inflammatory nuclear factor-κB (NF-κB) signalling and is important for clearance of pathogen infection in Drosophila melanogaster. M1-linked ubiquitin (M1-Ub) chains are assembled by the linear ubiquitin E3 ligase (LUBEL) in flies. Here, we have studied the role of LUBEL in sterile inflammation induced by different types of cellular stresses. We have found that the LUBEL catalyses formation of M1-Ub chains in response to hypoxic, oxidative and mechanical stress conditions. LUBEL is shown to be important for flies to survive low oxygen conditions and paraquat-induced oxidative stress. This protective action seems to be driven by stress-induced activation of the NF-κB transcription factor Relish via the immune deficiency (Imd) pathway. In addition to LUBEL, the intracellular mediators of Relish activation, including the transforming growth factor activating kinase 1 (Tak1), Drosophila inhibitor of apoptosis (IAP) Diap2, the IκB kinase γ (IKKγ) Kenny and the initiator caspase Death-related ced-3/Nedd2-like protein (Dredd), but not the membrane receptor peptidoglycan recognition protein (PGRP)-LC, are shown to be required for sterile inflammatory response and survival. Finally, we showed that the stress-induced upregulation of M1-Ub chains in response to hypoxia, oxidative and mechanical stress is also induced in mammalian cells and protects from stress-induced cell death. Taken together, our results suggest that M1-Ub chains are important for NF-κB signalling in inflammation induced by stress conditions often observed in chronic inflammatory diseases and cancer.


Subject(s)
Drosophila Proteins , NF-kappa B , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Inflammation/genetics , MAP Kinase Kinase Kinases/metabolism , Mammals/metabolism , Methionine/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Ubiquitination
7.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328569

ABSTRACT

The cardiac autonomic nervous system (cANS) regulates cardiac function by innervating cardiac tissue with axons, and cardiomyocytes (CMs) and neurons undergo comaturation during the heart innervation in embryogenesis. As cANS is essential for cardiac function, its dysfunctions might be fatal; therefore, cardiac innervation models for studying embryogenesis, cardiac diseases, and drug screening are needed. However, previously reported neuron-cardiomyocyte (CM) coculture chips lack studies of functional neuron-CM interactions with completely human-based cell models. Here, we present a novel completely human cell-based and electrophysiologically functional cardiac innervation on a chip in which a compartmentalized microfluidic device, a 3D3C chip, was used to coculture human induced pluripotent stem cell (hiPSC)-derived neurons and CMs. The 3D3C chip enabled the coculture of both cell types with their respective culture media in their own compartments while allowing the neuronal axons to traverse between the compartments via microtunnels connecting the compartments. Furthermore, the 3D3C chip allowed the use of diverse analysis methods, including immunocytochemistry, RT-qPCR and video microscopy. This system resembled the in vivo axon-mediated neuron-CM interaction. In this study, the evaluation of the CM beating response during chemical stimulation of neurons showed that hiPSC-neurons and hiPSC-CMs formed electrophysiologically functional axon-mediated interactions.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Axons , Humans , Microfluidics/methods , Myocytes, Cardiac/metabolism , Neurons/metabolism
8.
Cells ; 11(6)2022 03 19.
Article in English | MEDLINE | ID: mdl-35326497

ABSTRACT

Ischemic heart disease (IHD) is one of the leading causes of mortality worldwide. Preserving functionality and preventing arrhythmias of the heart are key principles in the management of patients with IHD. Levosimendan, a unique calcium (Ca2+) enhancer with inotropic activity, has been introduced into clinical usage for heart failure treatment. Human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs) offer an opportunity to better understand the pathophysiological mechanisms of the disease as well as to serve as a platform for drug screening. Here, we developed an in vitro IHD model using hiPSC-CMs in hypoxic conditions and defined the effects of the subsequent hypoxic stress on CMs functionality. Furthermore, the effect of levosimendan on hiPSC-CMs functionality was evaluated during and after hypoxic stress. The morphology, contractile, Ca2+-handling, and gene expression properties of hiPSC-CMs were investigated in response to hypoxia. Hypoxia resulted in significant cardiac arrhythmia and decreased Ca2+ transient amplitude. In addition, disorganization of sarcomere structure was observed after hypoxia induction. Interestingly, levosimendan presented significant antiarrhythmic properties, as the arrhythmia was abolished or markedly reduced with levosimendan treatment either during or after the hypoxic stress. Moreover, levosimendan presented significant protection from the sarcomere alterations induced by hypoxia. In conclusion, this chip model appears to be a suitable preclinical representation of IHD. With this hypoxia platform, detailed knowledge of the disease pathophysiology can be obtained. The antiarrhythmic effect of levosimendan was clearly observed, suggesting a possible new clinical use for the drug.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Ischemia , Anti-Arrhythmia Agents/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Cells, Cultured , Humans , Hypoxia/metabolism , Ischemia/metabolism , Lab-On-A-Chip Devices , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Simendan/metabolism , Simendan/pharmacology
9.
Front Bioeng Biotechnol ; 10: 764237, 2022.
Article in English | MEDLINE | ID: mdl-35211462

ABSTRACT

The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.

10.
Nanoscale ; 14(2): 448-463, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34908086

ABSTRACT

In this study, a nanocellulose-based material showing anisotopic conductivity is introduced. The material has up to 1000 times higher conductivity along the dry-line boundary direction than along the radial direction. In addition to the material itself, the method to produce the material is novel and is based on the alignment of cationic cellulose nanofibers (c-CNFs) along the dry-line boundary of an evaporating droplet composed of c-CNFs in two forms and conductive multi-walled carbon nanotubes (MWCNTs). On the one hand, c-CNFs are used as a dispersant of MWCNTs, and on the other hand they are used as an additional suspension element to create the desired anisotropy. When the suspended c-CNF is left out, and the nanocomposite film is manufactured using the high energy sonicated c-CNF/MWCNT dispersion only, conductive anisotropy is not present but evenly conducting nanocomposite films are obtained. Therefore, we suggest that suspending additional c-CNFs in the c-CNF/MWCNT dispersion results in nanocomposite films with anisotropic conductivity. This is a new way to obtain nanocomposite films with substantial anisotropic conductivity.

11.
Sci Rep ; 11(1): 8346, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863949

ABSTRACT

Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as [Formula: see text], making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.

12.
Sci Rep ; 11(1): 4153, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603154

ABSTRACT

Ischemic heart disease is a major cause of death worldwide, and the only available therapy to salvage the tissue is reperfusion, which can initially cause further damage. Many therapeutics that have been promising in animal models have failed in human trials. Thus, functional human based cardiac ischemia models are required. In this study, a human induced pluripotent stem cell derived-cardiomyocyte (hiPSC-CM)-based platform for modeling ischemia-reperfusion was developed utilizing a system enabling precise control over oxygen concentration and real-time monitoring of the oxygen dynamics as well as iPS-CM functionality. In addition, morphology and expression of hypoxia-related genes and proteins were evaluated as hiPSC-CM response to 8 or 24 h hypoxia and 24 h reoxygenation. During hypoxia, initial decrease in hiPSC-CM beating frequency was observed, after which the CMs adapted to the conditions and the beating frequency gradually increased already before reoxygenation. During reoxygenation, the beating frequency typically first surpassed the baseline before settling down to the values close the baseline. Furthermore, slowing on the field potential propagation throughout the hiPSC-CM sheet as well as increase in depolarization time and decrease in overall field potential duration were observed during hypoxia. These changes were reversed during reoxygenation. Disorganization of sarcomere structures was observed after hypoxia and reoxygenation, supported by decrease in the expression of sarcomeric proteins. Furthermore, increase in the expression of gene encoding glucose transporter 1 was observed. These findings indicate, that despite their immature phenotype, hiPSC-CMs can be utilized in modeling ischemia-reperfusion injury.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocardial Ischemia/therapy , Myocytes, Cardiac/cytology , Sarcomeres/pathology , Cell Line , Humans , Phenotype
13.
Biomacromolecules ; 21(12): 4857-4870, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33136375

ABSTRACT

Engineering artificial skin constructs is an ongoing challenge. An ideal material for hosting skin cells is still to be discovered. A promising candidate is low-cost cellulose, which is commonly fabricated in the form of a mesh and is applied as a wound dressing. Unfortunately, the structure and the topography of current cellulose meshes are not optimal for cell growth. To enhance the surface structure and the physicochemical properties of a commercially available mesh, we coated the mesh with wood-derived cellulose nanofibrils (CNFs). Three different types of mesh coatings are proposed in this study as a skin cell carrier: positively charged cationic cellulose nanofibrils (cCNFs), negatively charged anionic cellulose nanofibrils (aCNFs), and a combination of these two materials (c+aCNFs). These cell carriers were seeded with normal human dermal fibroblasts (NHDFs) or with human adipose-derived stem cells (ADSCs) to investigate cell adhesion, spreading, morphology, and proliferation. The negatively charged aCNF coating significantly improved the proliferation of both cell types. The positively charged cCNF coating significantly enhanced the adhesion of ADSCs only. The number of NHDFs was similar on the cCNF coatings and on the noncoated pristine cellulose mesh. However, the three-dimensional (3D) structure of the cCNF coating promoted cell survival. The c+aCNF construct proved to combine benefits from both types of CNFs, which means that the c+aCNF cell carrier is a promising candidate for further application in skin tissue engineering.


Subject(s)
Cellulose , Skin , Humans , Hydrogels , Stem Cells , Tissue Engineering
14.
Biosens Bioelectron ; 168: 112553, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32877779

ABSTRACT

Epilepsies are a group of neurological disorders characterised by recurrent epileptic seizures. Seizures, defined as abnormal transient discharges of neuronal activity, can affect the entire brain circuitry or remain more focal in the specific brain regions and neuronal networks. Human pluripotent stem cell (hPSC)-derived neurons are a promising option for modelling epilepsies, but as such, they do not model groups of connected neuronal networks or focal seizures. Our solution is a Modular Platform for Epilepsy Modelling In Vitro (MEMO), a lab-on-chip device, in which three hPSC-derived networks are separated by a novel microfluidic cell culture device that allows controlled network-to-network axonal connections through microtunnels. In this study, we show that the neuronal networks formed a functional circuitry that was successfully cultured in MEMO for up to 98 days. The spontaneous neuronal network activities were monitored with an integrated custom-made microelectrode array (MEA). The networks developed spontaneous burst activity that was synchronous both within and between the axonally connected networks, i.e. mimicking both local and circuitry functionality of the brain. A convulsant, kainic acid, increased bursts only in the specifically treated networks. The activity reduction by an anticonvulsant, phenytoin, was also localised to treated networks. Therefore, modelling focal seizures in human neuronal networks is now possible with the developed chip.


Subject(s)
Biosensing Techniques , Epilepsy , Brain , Humans , Lab-On-A-Chip Devices , Nerve Net , Neurons , Seizures
15.
Biomed Microdevices ; 22(2): 41, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32494857

ABSTRACT

Luminescence-based oxygen sensing is a widely used tool in cell culture applications. In a typical configuration, the luminescent oxygen indicators are embedded in a solid, oxygen-permeable matrix in contact with the culture medium. However, in sensitive cell cultures even minimal leaching of the potentially cytotoxic indicators can become an issue. One way to prevent the leaching is to immobilize the indicators covalently into the supporting matrix. In this paper, we report on a method where platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP) oxygen indicators are covalently immobilized into a polymer matrix consisting of polystyrene and poly(pentafluorostyrene). We study how the covalent immobilization influences the sensing material's cytotoxicity to human induced pluripotent stem cell-derived (hiPSC-derived) neurons and cardiomyocytes (CMs) through 7-13 days culturing experiments and various viability analyses. Furthermore, we study the effect of the covalent immobilization on the indicator leaching and the oxygen sensing properties of the material. In addition, we demonstrate the use of the covalently linked oxygen sensing material in real time oxygen tension monitoring in functional hypoxia studies of the hiPSC-derived CMs. The results show that the covalently immobilized indicators substantially reduce indicator leaching and the cytotoxicity of the oxygen sensing material, while the influence on the oxygen sensing properties remains small or nonexistent.


Subject(s)
Luminescent Agents/chemistry , Luminescent Agents/toxicity , Oxygen/analysis , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Neurons/cytology , Neurons/drug effects , Porphyrins/chemistry
16.
SLAS Technol ; 25(5): 455-462, 2020 10.
Article in English | MEDLINE | ID: mdl-32351160

ABSTRACT

This paper presents a novel microflow-based concept for studying the permeability of in vitro cell models or ex vivo tissues. Using the proposed concept, we demonstrate how to maintain physiologically relevant test conditions and produce highly reproducible permeability values for a range (31) of drug compounds. The apparent permeability coefficients (Papp) showed excellent correlation (0.89) with the values from experiments performed with a conventional Ussing chamber. Additionally, the microflow-based concept produces notably more concentrated samples than the conventional Ussing chamber-based approach, despite the fact that more than 10 times smaller quantities of test compounds and biological membranes are needed in the microflow-based concept.


Subject(s)
Microtechnology/instrumentation , Pharmaceutical Preparations/metabolism , Rheology/instrumentation , Animals , Cornea/physiology , Permeability , Reproducibility of Results , Swine , Time Factors
17.
Micromachines (Basel) ; 11(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423145

ABSTRACT

Microelectrode array (MEA) is a tool used for recording bioelectric signals from electrically active cells in vitro. In this paper, ion beam assisted electron beam deposition (IBAD) has been used for depositing indium tin oxide (ITO) and titanium nitride (TiN) thin films which are applied as transparent track and electrode materials in MEAs. In the first version, both tracks and electrodes were made of ITO to guarantee full transparency and thus optimal imaging capability. In the second version, very thin (20 nm) ITO electrodes were coated with a thin (40 nm) TiN layer to decrease the impedance of Ø30 µm electrodes to one third (1200 kΩ 320 kΩ) while maintaining (partial) transparency. The third version was also composed of transparent ITO tracks, but the measurement properties were optimized by using thick (200 nm) opaque TiN electrodes. In addition to the impedance, the optical transmission and electric noise levels of all three versions were characterized and the functionality of the MEAs was successfully demonstrated using human pluripotent stem cell-derived neuronal cells. To understand more thoroughly the factors contributing to the impedance, MEAs with higher IBAD ITO thickness as well as commercial sputter-deposited and highly conductive ITO were fabricated for comparison. Even if the sheet-resistance of our IBAD ITO thin films is very high compared to the sputtered one, the impedances of the MEAs of each ITO grade were found to be practically equal (e.g., 300-370 kΩ for Ø30 µm electrodes with 40 nm TiN coating). This implies that the increased resistance of the tracks, either caused by lower thickness or lower conductivity, has hardly any contribution to the impedance of the MEA electrodes. The impedance is almost completely defined by the double-layer interface between the electrode top layer and the medium including cells.

18.
Nanomaterials (Basel) ; 10(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979245

ABSTRACT

Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.

19.
Biomech Model Mechanobiol ; 19(1): 291-303, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31444593

ABSTRACT

In this paper, we present a transparent mechanical stimulation device capable of uniaxial stimulation, which is compatible with standard bioanalytical methods used in cellular mechanobiology. We validate the functionality of the uniaxial stimulation system using human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). The pneumatically controlled device is fabricated from polydimethylsiloxane (PDMS) and provides uniaxial strain and superior optical performance compatible with standard inverted microscopy techniques used for bioanalytics (e.g., fluorescence microscopy and calcium imaging). Therefore, it allows for a continuous investigation of the cell state during stretching experiments. The paper introduces design and fabrication of the device, characterizes the mechanical performance of the device and demonstrates the compatibility with standard bioanalytical analysis tools. Imaging modalities, such as high-resolution live cell phase contrast imaging and video recordings, fluorescent imaging and calcium imaging are possible to perform in the device. Utilizing the different imaging modalities and proposed stretching device, we demonstrate the capability of the device for extensive further studies of hiPSC-CMs. We also demonstrate that sarcomere structures of hiPSC-CMs organize and orient perpendicular to uniaxial strain axis and thus express more maturated nature of cardiomyocytes.


Subject(s)
Biophysics/instrumentation , Myocytes, Cardiac/cytology , Cell Shape/drug effects , Dimethylpolysiloxanes/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Sarcomeres/drug effects , Sarcomeres/metabolism , Stress, Mechanical
20.
Acta Biomater ; 101: 327-343, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31711900

ABSTRACT

In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human induced pluripotent stem cell (hiPSC)-derived cells. For the first time, hiPSC-derived retinal pigment epithelium (RPE) and endothelial cells (EC) were cultured on opposite sides of porous polylactide substrates prepared by breath figures (BF), where both surfaces had been collagen-coated by Langmuir-Schaefer (LS) technology. Small modifications of casting conditions during material preparation allowed the production of free-standing materials with distinct porosity, wettability and ion diffusion capacity. Complete pore coverage was achieved by the collagen coating procedure, resulting in a detectable nanoscale topography. Primary retinal endothelial cells (ACBRI181) and umbilical cord vein endothelial cells (hUVEC) were utilised as EC references. Mono-cultures of all ECs were prepared for comparison. All tested materials supported cell attachment and growth. In mono-culture, properties of the materials had a major effect on the growth of all ECs. In co-culture, the presence of hiPSC-RPE affected the primary ECs more significantly than hiPSC-EC. In consistency, hiPSC-RPE were also less affected by hiPSC-EC than by the primary ECs. Finally, our results show that the modulation of the porosity of the materials can promote or prevent EC migration. In short, we showed that the behaviour of the cells is highly dependent on the three main variables of the study: the presence of a second cell type in co-culture, the source of endothelial cells and the biomaterial properties. The combination of BF and LS methodologies is a powerful strategy to develop thin but stable materials enabling cell growth and modulation of cell-cell contact. STATEMENT OF SIGNIFICANCE: Artificial blood-retinal barriers (BRB), mimicking the interface at the back of the eye, are urgently needed as physiological and disease models, and for tissue transplantation targeting patients suffering from degenerative retinal diseases. Here, we developed a new co-culture model based on thin, biodegradable porous films, coated on both sides with collagen, one of the main components of the natural BRB, and cultivated endothelial and retinal pigment epithelial cells on opposite sides of the films, forming a three-layer structure. Importantly, our hiPSC-EC and hiPSC-RPE co-culture model is the first to exclusively use human induced pluripotent stem cells as cell source, which have been widely regarded as an practical candidate for therapeutic applications in regenerative medicine.


Subject(s)
Collagen/pharmacology , Epithelial Cells/cytology , Human Umbilical Vein Endothelial Cells/cytology , Induced Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/cytology , Adult , Biocompatible Materials/pharmacology , Coculture Techniques , Electric Impedance , Humans , Porosity , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...