Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 22(5): 100543, 2023 05.
Article in English | MEDLINE | ID: mdl-37030595

ABSTRACT

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.


Subject(s)
Cell Death , Neurons , Synapses , Animals , Male , Mice , Rats , Calpain/metabolism , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neurons/physiology , Neuroprotection , Proteome/analysis , Rats, Wistar , Stroke/pathology , Synapses/pathology , Synapses/physiology
2.
Biochemistry ; 50(31): 6667-77, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21699177

ABSTRACT

C-Terminal Src kinase-homologous kinase (CHK) exerts its tumor suppressor function by phosphorylating the C-terminal regulatory tyrosine of the Src-family kinases (SFKs). The phosphorylation suppresses their activity and oncogenic action. In addition to phosphorylating SFKs, CHK also performs non-SFK-related functions by phosphorylating other cellular protein substrates. To define these non-SFK-related functions of CHK, we used the "kinase substrate tracking and elucidation" method to search for its potential physiological substrates in rat brain cytosol. Our search revealed ß-synuclein as a potential CHK substrate, and Y127 in ß-synuclein as the preferential phosphorylation site. Using peptides derived from ß-synuclein and positional scanning combinatorial peptide library screening, we defined the optimal substrate phosphorylation sequence recognized by the CHK active site to be E-x-[Φ/E/D]-Y-Φ-x-Φ, where Φ and x represent hydrophobic residues and any residue, respectively. Besides ß-synuclein, cellular proteins containing motifs resembling this sequence are potential CHK substrates. Intriguingly, the CHK-optimal substrate phosphorylation sequence bears little resemblance to the C-terminal tail sequence of SFKs, indicating that interactions between the CHK active site and the local determinants near the C-terminal regulatory tyrosine of SFKs play only a minor role in governing specific phosphorylation of SFKs by CHK. Our results imply that recognition of SFKs by CHK is mainly governed by interactions between motifs located distally from the active site of CHK and determinants spatially separate from the C-terminal regulatory tyrosine in SFKs. Thus, besides assisting in the identification of potential CHK physiological substrates, our findings shed new light on how CHK recognizes SFKs and other protein substrates.


Subject(s)
Protein-Tyrosine Kinases/chemistry , Structural Homology, Protein , beta-Synuclein/chemistry , src Homology Domains , Amino Acid Motifs , Amino Acid Sequence , Animals , CSK Tyrosine-Protein Kinase , Catalytic Domain , Cytosol/enzymology , Cytosol/metabolism , HEK293 Cells , Humans , Molecular Sequence Data , Peptide Library , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Rats , Substrate Specificity , beta-Synuclein/metabolism , src-Family Kinases
3.
Bioorg Med Chem Lett ; 21(1): 329-31, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21111620

ABSTRACT

A group of fluorophore-labeled peptide substrates of Src kinases have been synthesized with the aid of click chemistry. Some of the generated peptides exhibit an increase in fluorescence upon phosphorylation and are capable of detecting Src kinases with high sensitivity and specificity. Their availability permits real-time activity measurement of aberrantly activated oncogenic Src kinases in the crude lysate of chronic myelogenous leukemia cells. These new chemosensor peptides are highly useful tools that can be used for high-throughput screening to search for small molecule inhibitors of Src kinases as potential therapeutics for cancer treatment.


Subject(s)
Enzyme Assays/methods , Fluorescent Dyes/chemistry , src-Family Kinases/metabolism , Amino Acid Sequence , Biosensing Techniques , Cell Line, Tumor , Click Chemistry , High-Throughput Screening Assays , Humans , Peptides/chemistry , Phosphorylation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL