Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 56(7): 226, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093442

ABSTRACT

Since 2019, Lumpy skin disease (LSD) has suddenly spread in many Asian countries, including India. LSD primarily occurs in cattle. However, recent LSD outbreaks in India have also revealed significant morbidity and production losses in buffaloes. This has raised concerns about the role of buffaloes in the epidemiology and transmission of LSD and necessitates the inclusion of buffaloes in the mass vaccination program for the prevention and control of the disease in the country. However, there is no significant data on the immune response in buffaloes following vaccination with the LSD vaccine. In this study, we evaluated antibody- and cell-mediated immune responses following vaccination with a newly developed live-attenuated LSD vaccine (Lumpi-ProVacInd). The detectable amount of anti-LSDV antibodies was observed at 1-2 months following vaccination, with a peak antibody titer at 3 months. Upon stimulation of the peripheral blood mononuclear cells (PBMCs) with the UV-inactivated LSDV antigen, there was a significant increase in CD8 + T cell counts in vaccinated animals as compared to the unvaccinated animals. Besides, vaccinated animals also showed a significant increase in IFN-γ levels upon antigenic stimulation of their PBMCs with LSDV antigen. In conclusion, the buffaloes also mount a potent antibody- and cell-mediated immune response following vaccination with Lumpi-ProVacInd.


Subject(s)
Buffaloes , Lumpy Skin Disease , Lumpy skin disease virus , Vaccines, Attenuated , Viral Vaccines , Animals , Buffaloes/immunology , Lumpy Skin Disease/prevention & control , Lumpy Skin Disease/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Lumpy skin disease virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , India , Immunity, Cellular , Antibodies, Viral/blood , Vaccination/veterinary , Leukocytes, Mononuclear/immunology , Female
2.
Anim Biotechnol ; 35(1): 2323592, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38770771

ABSTRACT

Nucleic acid aptamers have been used in the past for the development of diagnostic methods against a number of targets such as bacteria, pesticides, cancer cells etc. In the present study, six rounds of Cell-SELEX were performed on a ssDNA aptamer library against X-enriched sperm cells from Sahiwal breed cattle. Sequencing was used to examine the aptamer sequences that shown affinity for sperm carrying the X chromosome in order to find any possible X-sperm-specific sequences. Out of 35 identified sequences, 14 were selected based on bioinformatics analysis like G-Score and Mfold structures. Further validation of their specificity was done via fluorescence microscopy. The interaction of biotinylated-aptamer with sperm was also determined by visualizing the binding of streptavidin coated magnetic beads on the head region of the sperm under bright field microscopy. Finally, a real-time experiment was designed for the validation of X-sperm enrichment by synthesized aptamer sequences. Among the studied sequences, aptamer 29a exhibited a higher affinity for X sperm compared to Y sperm in a mixed population of sperm cells. By using aptamer sequence 29a, we obtained an enrichment of 70% for X chromosome bearing sperm cells.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Spermatozoa , X Chromosome , Male , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Spermatozoa/chemistry , Cattle , X Chromosome/genetics , SELEX Aptamer Technique/methods
3.
Virulence ; 15(1): 2324711, 2024 12.
Article in English | MEDLINE | ID: mdl-38527940

ABSTRACT

Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.


Subject(s)
Cattle Diseases , Lumpy skin disease virus , MicroRNAs , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/genetics , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Lumpy skin disease virus/genetics , MicroRNAs/genetics , Polymerase Chain Reaction , Biomarkers
4.
J Med Virol ; 96(4): e29555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546037

ABSTRACT

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Subject(s)
Eukaryotic Initiation Factor-4E , Hesperidin , Vaccinia virus , Animals , Cattle , Chlorocebus aethiops , Chick Embryo , Vero Cells , Molecular Docking Simulation , Vaccinia virus/genetics , Antiviral Agents/pharmacology , RNA, Messenger , Virus Replication
5.
Sci Rep ; 14(1): 6156, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486086

ABSTRACT

Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.


Subject(s)
Antifungal Agents , Aspergillosis , Antifungal Agents/pharmacology , Azoles/pharmacology , Aspergillosis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Drug Resistance, Fungal/genetics , Aspergillus/metabolism , Mutation , Gene Expression
6.
J Appl Microbiol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38211971

ABSTRACT

AIM: The primary objective of this study was to elucidate the putative cell wall-associated targets of compound 6i, a glycoconjugate of eugenol, in Aspergillus fumigatus, while also evaluating its toxicity and assessing histopathologic alterations in the liver, heart, and kidney of compound 6i-treated embryos using an in ovo model. METHOD: To achieve this aim, compound 6i was synthesized, and a series of biochemical assays were performed to determine its impact on the fungal cell wall. Additionally, qRT-PCR and LC-MS/MS analyses were conducted to investigate changes in gene and protein expression profiles associated with melanin biosynthesis, conidiation, siderophore production, transcriptional regulation of ß-glucan biosynthesis, and calcineurin activity in A. fumigatus. RESULTS: The experimental findings revealed that compound 6i exhibited notable antifungal activity against A. fumigatus by perturbing cell wall integrity, hindering ergosterol, glucan, and chitin biosynthesis, and inhibiting catalase production. Moreover, relative gene expression and proteomic analyses demonstrated that compound 6i exerted both down-regulatory and up-regulatory effects on several crucial genes and proteins involved in the aforementioned fungal processes. Furthermore, increased expression of oxidative stress-related proteins was observed in the presence of compound 6i. Notably, the glycoconjugate of eugenol did not elicit cytotoxicity in the liver, heart, and kidney of chick embryos. CONCLUSION: The current investigation elucidated the multifaceted mechanisms by which compound 6i exerts its antifungal effects against A. fumigatus, primarily through targeting cell wall components and signaling pathways. These findings underscore the potential of the eugenol glycoconjugate as a promising antifungal candidate, warranting further exploration and development for combating A. fumigatus infections.

7.
Arch Virol ; 168(12): 290, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955695

ABSTRACT

In this study, miRNA profiling of cells infected with lumpy skin disease virus (LSDV) was conducted for the first time. When compared to mock-infected cells, LSDV-infected primary lamb testicle (LT) cells showed dysregulation of 64, 85, and 85 miRNAs at 12 hours postinfection (hpi), 48 hpi, and 72 hpi, respectively. While some of these miRNAs were found to be dysregulated at a particular time point following LSDV infection, others were dysregulated at all three time points. Analysis of the differentially expressed miRNA-mRNA interaction networks, Gene Ontology analysis of the predicted targets, and KEGG analysis of highly enriched pathways revealed several cellular factors/pathways involved in protein/ion/enzyme binding, cell differentiation, movement of subcellular components, calcium reabsorption, aldosterone synthesis and secretion, and melanogenesis. Some selected upregulated (oar-mir-379-5p, oar-let-7d, Chr10-18769, Chr2_5162 and oar-miR-493-5p) and downregulated (ChrX-33741, Chr3_8257 and Chr26_32680) miRNAs were further confirmed by quantitative real-time PCR. These findings contribute to our understanding of virus replication, virus-host interactions, and disease pathogenesis, and the differentially expressed miRNAs and their cellular targets may serve as biomarkers as well as novel targets for therapeutic intervention against LSDV.


Subject(s)
Lumpy skin disease virus , MicroRNAs , Cattle , Male , Sheep , Animals , Testis , Cell Differentiation , Calcium , MicroRNAs/genetics
8.
Front Mol Biosci ; 9: 1055945, 2022.
Article in English | MEDLINE | ID: mdl-36619165

ABSTRACT

Curvuluria lunata is a melanized fungus pathogenic to both plants and animals including humans, causing from mild, febrile to life-threatening illness if not well treated. In humans, it is an etiological agent of keratomycosis, sinusitis, and onychomycosis in immunocompromised and immunocompetent patients. The development of multiple-drug-resistant strains poses a critical treatment issue as well as public health problem. Natural products are attractive prototypes for drug discovery due to their broad-spectrum efficacy and lower side effects. The present study explores possible targets of natural antifungal compounds (α-pinene, eugenol, berberine, and curcumin) against C. lunata via gene expression analysis, molecular docking interaction, and molecular dynamics (MD) studies. Curcumin, berberine, eugenol, and α-pinene exhibited in vitro antifungal activity at 78 µg/ml, 156 µg/ml, 156 µg/ml, and 1250 µg/ml, respectively. In addition, treatment by these compounds led to the complete inhibition of conidial germination and hindered the adherence when observed on onion epidermis. Several pathogenic factors of fungi are crucial for their survival inside the host including those involved in melanin biosynthesis, hyphal growth, sporulation, and mitogen-activated protein kinase (MAPK) signalling. Relative gene expression of velB, brn1, clm1, and pks18 responsible for conidiation, melanin, and cell wall integrity was down-regulated significantly. Results of molecular docking possessed good binding affinity of compounds and have confirmed their potential targets as THR and VelB proteins. The docked structures, having good binding affinity among all, were further refined, and rescored from their docked poses through 100-ns long MD simulations. The MDS study revealed that curcumin formed a stable and energetically stabilized complex with the target protein. Therefore, the study concludes that the antifungal compounds possess significant efficacy to inhibit C. lunata growth targeting virulence proteins/genes involved in spore formation and melanin biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL