Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409959

ABSTRACT

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/genetics , Hypertrophy , IMP Dehydrogenase
2.
J Virol ; 96(12): e0039422, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35612313

ABSTRACT

The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children.


Subject(s)
Epstein-Barr Virus Infections , Gene Deletion , Genome, Viral , Herpesvirus 4, Human , Lymphoproliferative Disorders , Adult , Asymptomatic Infections , Child , Herpesvirus 4, Human/genetics , Humans , Killer Cells, Natural/virology , Lymphoproliferative Disorders/virology , T-Lymphocytes/virology
3.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34647971

ABSTRACT

Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Antibodies, Viral/immunology , Female , HLA Antigens/immunology , Humans , Lymphocyte Activation , Male
4.
PLoS One ; 16(9): e0256440, 2021.
Article in English | MEDLINE | ID: mdl-34469459

ABSTRACT

Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct molecular subtype of gastric cancer characterized by viral infection and cellular abnormalities, including loss of AT-rich interaction domain 1A (ARID1A) expression (lost ARID1A). To evaluate the significance of lost ARID1A in the development of EBVaGC, we performed in situ hybridization of EBV-encoded RNA (EBER) and immunohistochemistry of ARID1A in the non-neoplastic gastric mucosa and intramucosal cancer tissue of EBVaGC with in vitro infection analysis of ARID1A-knockdown and -knockout gastric cells. Screening of EBER by in situ hybridization revealed a frequency of approximately 0.2% EBER-positive epithelial cells in non-neoplastic gastric mucosa tissue samples. Six small foci of EBV-infected epithelial cells showed two types of histology: degenerated (n = 3) and metaplastic (n = 3) epithelial cells. ARID1A was lost in the former type. In intramucosal EBVaGC, there were ARID1A-lost (n = 5) and -preserved tumors (n = 7), suggesting that ARID1A-lost carcinomas are derived from ARID1A-lost precursor cells in the non-neoplastic mucosa. Lost ARID1A was also observed in non-neoplastic mucosa adjacent to an ARID1A-lost EBVaGC. In vitro experiments using siRNA knockdown and the CRISPR/Cas9-knockout system demonstrated that transient reduction or permanent loss of ARID1A expression markedly increased the efficiency of EBV infection to stomach epithelial cells. Taken together, lost ARID1A plays a role in initiating EBV-driven carcinogenesis in stomach epithelial cells, which develop to a distinct subtype of EBVaGC within the proper mucosal layer. Lost ARID1A is one of the constituents of virus-host interactions in the carcinogenesis of EBVaGC.


Subject(s)
Carcinogenesis/genetics , Carcinoma/genetics , DNA-Binding Proteins/deficiency , Epstein-Barr Virus Infections/genetics , Stomach Neoplasms/genetics , Transcription Factors/deficiency , Adult , Aged , Carcinogenesis/pathology , Carcinoma/pathology , Carcinoma/virology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Female , Gastric Mucosa/pathology , Gastric Mucosa/virology , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Herpesvirus 4, Human/isolation & purification , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , Transcription Factors/genetics
5.
Virology ; 557: 44-54, 2021 05.
Article in English | MEDLINE | ID: mdl-33639481

ABSTRACT

Epstein-Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of malignancy. RNAseq of peripheral blood primary B cell samples infected with wild-type EBV revealed that expression of programmed cell death ligand-1 (PD-L1) is markedly induced by infection. This induction of PD-L1 was alleviated by knockout of the EBNA2 gene, but knockout of LMP1 had little effect. ChIPseq, ChIA-PET, and reporter assays further confirmed that EBNA2-binding sites in the promoter region and at 130 kb downstream of the PD-L1 gene played important roles in PD-L1 induction. Our results indicate that EBV mainly utilizes the EBNA2 gene for induction of PD-L1 and to evade host immunity on infection of primary B cells. Furthermore, pathway analysis revealed that genes involved in the cell cycle, metabolic processes, membrane morphogenesis, and vesicle regulation were induced by EBNA2, and that EBNA2 suppressed genes related to immune signaling.


Subject(s)
B-Lymphocytes/virology , B7-H1 Antigen/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/immunology , Sequence Analysis, RNA/methods , Viral Proteins/genetics , B-Lymphocytes/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cells, Cultured , Epstein-Barr Virus Nuclear Antigens/immunology , Epstein-Barr Virus Nuclear Antigens/metabolism , HEK293 Cells , Herpesvirus 4, Human/genetics , Humans , Viral Proteins/immunology , Viral Proteins/metabolism
6.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33433312

ABSTRACT

Epstein-Barr virus (EBV) establishes lifelong latent infection in the majority of healthy individuals, while it is a causative agent for various diseases, including some malignancies. Recent high-throughput sequencing results indicate that there are substantial levels of viral genome heterogeneity among different EBV strains. However, the extent of EBV strain variation among asymptomatically infected individuals remains elusive. Here, we present a streamlined experimental strategy to clone and sequence EBV genomes derived from human tonsillar tissues, which are the reservoirs of asymptomatic EBV infection. Complete EBV genome sequences, including those of repetitive regions, were determined for seven tonsil-derived EBV strains. Phylogenetic analyses based on the whole viral genome sequences of worldwide non-tumour-derived EBV strains revealed that Asian EBV strains could be divided into several distinct subgroups. EBV strains derived from nasopharyngeal carcinoma-endemic areas constitute different subgroups from a subgroup of EBV strains from non-endemic areas, including Japan. The results could be consistent with biased regional distribution of EBV-associated diseases depending on the different EBV strains colonizing different regions in Asian countries.


Subject(s)
Epstein-Barr Virus Infections/virology , Genome, Viral , Herpesvirus 4, Human/genetics , Lymphocytes/virology , Palatine Tonsil/virology , Asymptomatic Infections , Cell Line , Chromosomes, Artificial, Bacterial , Cloning, Molecular , DNA, Viral/genetics , Genes, Viral , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Japan , Phylogeny , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Latency/genetics , Whole Genome Sequencing
7.
Nat Genet ; 52(9): 919-930, 2020 09.
Article in English | MEDLINE | ID: mdl-32719515

ABSTRACT

Epstein-Barr virus (EBV) is associated with several human malignancies including 8-10% of gastric cancers (GCs). Genome-wide analysis of 3D chromatin topologies across GC lines, primary tissue and normal gastric samples revealed chromatin domains specific to EBV-positive GC, exhibiting heterochromatin-to-euchromatin transitions and long-range human-viral interactions with non-integrated EBV episomes. EBV infection in vitro suffices to remodel chromatin topology and function at EBV-interacting host genomic loci, converting H3K9me3+ heterochromatin to H3K4me1+/H3K27ac+ bivalency and unleashing latent enhancers to engage and activate nearby GC-related genes (for example TGFBR2 and MZT1). Higher-order epigenotypes of EBV-positive GC thus signify a novel oncogenic paradigm whereby non-integrative viral genomes can directly alter host epigenetic landscapes ('enhancer infestation'), facilitating proto-oncogene activation and tumorigenesis.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/virology , Chromatin/genetics , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/virology , Transcription, Genetic/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Epigenomics/methods , Humans , Proto-Oncogene Mas
8.
PLoS One ; 14(9): e0222519, 2019.
Article in English | MEDLINE | ID: mdl-31518362

ABSTRACT

Productive replication of Epstein-Barr virus (EBV) during the lytic cycle occurs in discrete sites within nuclei, termed replication compartments. We previously proposed that replication compartments consist of two subnuclear domains: "ongoing replication foci" and "BMRF1-cores". Viral genome replication takes place in ongoing replication foci, which are enriched with viral replication proteins, such as BALF5 and BALF2. Amplified DNA and BMRF1 protein accumulate in BMRF1-cores, which are surrounded by ongoing replication foci. We here determined the locations of procapsid and genome-packaging proteins of EBV via three-dimensional (3D) surface reconstruction and correlative fluorescence microscopy-electron microscopy (FM-EM). The results revealed that viral factors required for DNA packaging, such as BGLF1, BVRF1, and BFLF1 proteins, are located in the innermost subdomains of the BMRF1-cores. In contrast, capsid structural proteins, such as BBRF1, BORF1, BDLF1, and BVRF2, were found both outside and inside the BMRF1-cores. Based on these observations, we propose a model in which viral procapsids are assembled outside the BMRF1-cores and subsequently migrate therein, where viral DNA encapsidation occurs. To our knowledge, this is the first report describing capsid assembly sites in relation to EBV replication compartments.


Subject(s)
Antigens, Viral/genetics , Genome, Viral/genetics , Herpesvirus 4, Human/genetics , Virus Replication/genetics , Cell Line , Cell Nucleus/genetics , DNA Replication/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Humans , Viral Proteins/genetics
9.
Microorganisms ; 7(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052238

ABSTRACT

Epstein-Barr virus (EBV) genomes, particularly their latent genes, are heterogeneous among strains. The heterogeneity of EBV-encoded latent membrane protein 1 (LMP1) raises the question of whether there are functional differences between LMP1 expressed by cancer-associated EBV and that by non-cancerous strains. Here, we used bacterial artificial chromosome (BAC)-cloned EBV genomes retaining all virally encoded microRNA (miRNA) genes to investigate the functions of cancer-derived LMP1 in the context of the EBV genome. HEK293 cells were stably transfected with EBV-BAC clone DNAs encoding either nasopharyngeal carcinoma (NPC)-derived CAO-LMP1 (LMP1CAO) or LMP1 from a prototype B95-8 strain of EBV (LMP1B95-8). When an EBV-BAC clone DNA encoding LMP1CAO was stably transfected into HEK293 cells, it generated many more stable transformants than the control clone encoding LMP1B95-8. Furthermore, stably transfected HEK293 cells exhibited highly efficient production of progeny virus. Importantly, deletion of the clustered viral miRNA genes compromised the ability to produce progeny viruses. These results indicate that cancer-derived LMP1 and viral miRNAs together are necessary for efficient production of progeny virus, and that the resulting increase in efficiency contributes to EBV-mediated epithelial carcinogenesis.

10.
Cancer Sci ; 110(4): 1132-1139, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30697862

ABSTRACT

Epstein-Barr virus (EBV) is a human tumor virus and is etiologically linked to various malignancies. Certain EBV-associated diseases, such as Burkitt lymphomas and nasopharyngeal carcinomas, are endemic and exhibit biased geographic distribution worldwide. Recent advances in deep sequencing technology enabled high-throughput sequencing of the EBV genome from clinical samples. Rapid cloning and sequencing of cancer-derived EBV genomes, followed by reconstitution of infectious virus, have also become possible. These developments have revealed that various EBV strains are differentially distributed throughout the world, and that the behavior of cancer-derived EBV strains is different from that of the prototype EBV strain of non-cancerous origin. In this review, we summarize recent progress and future perspectives regarding the association between EBV strain variation and cancer.


Subject(s)
Cell Transformation, Viral , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/physiology , Neoplasms/etiology , Animals , Epstein-Barr Virus Infections/epidemiology , Genetic Variation , Genome, Viral , Genomics/methods , Herpesvirus 4, Human/classification , Humans
11.
PLoS One ; 14(1): e0211358, 2019.
Article in English | MEDLINE | ID: mdl-30695048

ABSTRACT

Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC), one of four major gastric cancer types, consists of clonal growth of EBV-infected epithelial cells. However, the significance of viral loads in each tumor cell has not been evaluated. EBV-DNA is stably maintained in episomal form in the nucleus of each cancer cell. To estimate EBV copy number per genome (EBV-CN), qPCR of viral EBNA1 and host GAPDH, standardized by Namalwa DNA (one copy/genome), was applied to the formalin-fixed paraffin embedded (FFPE) surgically resected EBVaGC specimens (n = 43) and EBVaGC cell lines (SNU-719 and NCC-24). In surgical specimens, the cancer cell ratio (CCR) was determined with image analysis, and EBV-CN was obtained by adjusting qPCR value with CCR. Fluorescent in situ hybridization (FISH) was also applied to the FFPE sections using the whole EBV-genome as a probe. In surgical specimens, EBV-CN obtained by qPCR/CCR was between 1.2 and 185 copies with a median of 9.9. EBV-CN of SNU-719 and NCC-24 was 42.0 and 1.1, respectively. A linear correlation was observed with qPCR/CCR data up to 20 copies/genome (40 signals/nucleus), the limit of FISH analysis. In addition, substantial variation in the number of EBV foci was observed. Based on qPCR/CCR, high EBV-CN (>10 copies) correlated with PD-L1 expression in cancer cells (P = 0.015), but not with other pathological indicators. Furthermore, EBVaGC with high EBV-CN showed worse disease-specific survival (P = 0.041). Our findings suggest that cancer cell viral loads may contribute to expression of the immune checkpoint molecule and promotion of cancer progression in EBVaGC.


Subject(s)
B7-H1 Antigen/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/growth & development , Stomach Neoplasms/virology , Up-Regulation , Aged , Cell Line, Tumor , Disease Progression , Epstein-Barr Virus Infections/virology , Female , Gene Dosage , Herpesvirus 4, Human/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Prognosis , Stomach Neoplasms/genetics , Survival Analysis , Viral Load
12.
Gastric Cancer ; 22(3): 486-496, 2019 05.
Article in English | MEDLINE | ID: mdl-30264329

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is an oncogenic human herpesvirus involved in the development of around 10% of gastric cancers. The overexpression of PD-L1 is one of the features of EBV-associated gastric cancer (EBVaGC); however, the function of PD-L1 has not been studied in EBVaGC. METHODS: We used three EBVaGC cell lines, SNU719 cells, NCC24 cells, and YCCEL1 cells, to evaluate the PD-L1 expression and function in EBVaGC. Jurkat T-lymphocytes expressing PD-1 were co-cultured with NCC24 and YCCEL1 cells and the cell cycles were analyzed. To study the regulatory mechanism for PD-L1 expression, the 3'UTR of PD-L1 was sequenced, and the effect of inhibitors of the IFN-γ signaling pathway was evaluated. RESULTS: All of the EBVaGC cell lines expressed PD-L1, and its expression was further enhanced by stimulation with IFN-γ. In Jurkat T-cells co-cultured with IFN-γ-stimulated NCC24 and YCCEL1 cells, the number of cells in the G0/G1 phase was significantly increased. This G0/G1 arrest was partially released by administration of anti-PD-L1 antibody. We found SNPs in PD-L1 3'UTR nucleotide sequences that were located at seed regions for microRNAs. Treatment of EBVaGC cell lines with JAK2-inhibitor, PI3K-inhibitor, and mTOR inhibitor reduced the level of PD-L1 expression to the same level as cells without IFN-γ stimulation. CONCLUSIONS: EBVaGC cells expressing high levels of PD-L1 suppress T-cell proliferation, and the IFN-γ signaling pathway is involved in the expression of PD-L1.


Subject(s)
B7-H1 Antigen/metabolism , Epstein-Barr Virus Infections/complications , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/immunology , Programmed Cell Death 1 Receptor/metabolism , Stomach Neoplasms/immunology , T-Lymphocytes/immunology , Apoptosis , B7-H1 Antigen/genetics , Cell Cycle , Cell Proliferation , Enzyme Inhibitors/pharmacology , Epstein-Barr Virus Infections/virology , Humans , Polymorphism, Single Nucleotide , Programmed Cell Death 1 Receptor/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tumor Cells, Cultured
13.
mSphere ; 3(6)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487153

ABSTRACT

Epigenetic modifications play a pivotal role in the expression of the genes of Epstein-Barr virus (EBV). We found that de novo EBV infection of primary B cells caused moderate induction of enhancer of zeste homolog 2 (EZH2), the major histone H3 lysine 27 (K27) methyltransferase. To investigate the role of EZH2, we knocked out the EZH2 gene in EBV-negative Akata cells by the CRISPR/Cas9 system and infected the cells with EBV, followed by selection of EBV-positive cells. During the latent state, growth of EZH2-knockout (KO) cells was significantly slower after infection compared to wild-type controls, despite similar levels of viral gene expression between cell lines. After induction of the lytic cycle by anti-IgG, KO of EZH2 caused notable induction of expression of both latent and lytic viral genes, as well as increases in both viral DNA replication and progeny production. These results demonstrate that EZH2 is crucial for the intricate epigenetic regulation of not only lytic but also latent gene expression in Akata cells.IMPORTANCE The life cycle of EBV is regulated by epigenetic modifications, such as CpG methylation and histone modifications. Here, we found that the expression of EZH2, which encodes a histone H3K27 methyltransferase, was induced by EBV infection; therefore, we generated EZH2-KO cells to investigate the role of EZH2 in EBV-infected Akata B cells. Disruption of EZH2 resulted in increased expression of EBV genes during the lytic phase and, therefore, efficient viral replication and progeny production. Our results shed light on the mechanisms underlying reactivation from an epigenetic point of view and further suggest a role for EZH2 as a form of innate immunity that restricts viral replication in infected cells.


Subject(s)
Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Virus Replication , Cell Line , Enhancer of Zeste Homolog 2 Protein/genetics , Epigenesis, Genetic , Gene Deletion , Gene Knockout Techniques , Humans
14.
Adv Exp Med Biol ; 1045: 377-394, 2018.
Article in English | MEDLINE | ID: mdl-29896676

ABSTRACT

Epstein-Barr virus (EBV) is one of the most widespread human pathogens. EBV infection is usually asymptomatic, and it establishes life-long latent infection. EBV latent infection sometimes causes various tumorigenic diseases, such as EBV-related lymphoproliferative diseases, Burkitt lymphomas, Hodgkin lymphomas, NK/T-cell lymphomas, and epithelial carcinomas. EBV-encoded latent genes are set of viral genes that are expressed in latently infected cells. They include virally encoded proteins, noncoding RNAs, and microRNAs. Different latent gene expression patterns are noticed in different types of EBV-infected cells. Viral latent gene products contribute to EBV-mediated B cell transformation and likely contribute to lymphomagenesis and epithelial carcinogenesis as well. Many biological functions of viral latent gene products have been reported, making difficult to understand a whole view of EBV latency. In this review, we will focus on latent gene functions that have been verified by genetic experiments using EBV mutants. We will also summarize how viral latent genes contribute to EBV-mediated B cell transformation, Burkitt lymphomagenesis, and epithelial carcinogenesis.


Subject(s)
Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/physiology , Viral Proteins/metabolism , Virus Latency , Animals , B-Lymphocytes/virology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Humans , Viral Proteins/genetics
15.
Viruses ; 10(4)2018 04 03.
Article in English | MEDLINE | ID: mdl-29614006

ABSTRACT

Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.


Subject(s)
CRISPR-Cas Systems , Cloning, Molecular , Epstein-Barr Virus Infections , Genome, Viral , Herpesvirus 4, Human/genetics , Virus Latency , Chromosomes, Artificial, Bacterial , DNA, Viral , Homologous Recombination , Humans , Plasmids/genetics , Sequence Analysis, DNA , Transgenes , Virus Integration , Whole Genome Sequencing
16.
Oncotarget ; 8(24): 39345-39355, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28454117

ABSTRACT

Epstein-Barr virus (EBV) latently infects malignant epithelial cells in approximately 10% of all gastric cancers. Latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role in malignant transformation in EBV-associated nasopharyngeal carcinoma and B-cell lymphoma; however, its expression has not been detected in EBV-associated gastric cancer. To address why LMP1 has not been detected in EBV-positive gastric tumors, we focused on the interactions between LMP1-positive and -negative cells and stably expressed LMP1 in the gastric cancer cell line AGS. We showed that the number of LMP1-positive cells decreased gradually with each cell passage when the cells were co-cultured with LMP1-negative cells. Time-lapse imaging showed that LMP1-positive cells were eliminated from a monolayer of LMP1-negative cells. Furthermore, LMP1-positive cells stimulated the proliferation of surrounding LMP1-negative cells, but not LMP1-positive cells, via exosome-mediated EGFR activation. Our data indicate that LMP1 expression drives cell competition between LMP1-positive and -negative cells, affecting the behavior of the cells within gastric tissue.


Subject(s)
Epstein-Barr Virus Infections/complications , Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Stomach Neoplasms/etiology , Viral Matrix Proteins/genetics , Biomarkers , Cell Communication , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Epstein-Barr Virus Infections/virology , Exosomes/metabolism , Humans , Stomach Neoplasms/metabolism
17.
J Virol ; 90(9): 4383-93, 2016 May.
Article in English | MEDLINE | ID: mdl-26889033

ABSTRACT

UNLABELLED: The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. IMPORTANCE: Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This experimental system should contribute to establishing the relationship between viral genome variation and EBV-associated diseases.


Subject(s)
CRISPR-Cas Systems/genetics , Cloning, Molecular , DNA, Viral , Genome, Viral , Herpesvirus 4, Human/genetics , Base Sequence , Cell Line, Tumor , Chromosomes, Artificial, Bacterial , Computational Biology/methods , Cytopathogenic Effect, Viral , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/virology , Gene Targeting/methods , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Plasmids/genetics , Sequence Alignment , Sequence Analysis, DNA , Stomach Neoplasms/etiology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication , ras Proteins/genetics , ras Proteins/metabolism
18.
J Virol ; 90(8): 3873-3889, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26819314

ABSTRACT

UNLABELLED: Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE: Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Trans-Activators/metabolism , Transcription Factor AP-2/metabolism , Viral Matrix Proteins/genetics , Binding Sites , Cell Transformation, Viral , HEK293 Cells , HeLa Cells , Humans , Mutation , Oncogenes , POU Domain Factors/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism
19.
Sci Rep ; 5: 11767, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123572

ABSTRACT

Epstein-Barr virus (EBV) is associated with several malignancies, including Burkitt lymphoma and nasopharyngeal carcinoma. To overcome such disorders, understanding the molecular mechanisms of the EBV replication is important. The EBV DNA polymerase (Pol) is one of the essential factors for viral lytic DNA replication. Although it is well known that its C-terminal half, possessing DNA polymerase and 3'-5' exonuclease activity, is highly conserved among Family B Pols, the NH2-terminal half has yet to be characterized in detail. In this study, we show that a stretch of hydrophobic amino acids within the pre-NH2-terminal domain of EBV Pol plays important role. In addition, we could identify the most essential residue for replication in the motif. These findings will shed light on molecular mechanisms of viral DNA synthesis and will help to develop new herpesviruses treatments.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , Herpesvirus 4, Human/enzymology , Viral Proteins/chemistry , Virus Replication , Amino Acid Sequence , Conserved Sequence , DNA Replication , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Directed DNA Polymerase/metabolism , Genome, Viral , HEK293 Cells , Herpesvirus 4, Human/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Viral Proteins/metabolism
20.
J Virol ; 89(5): 2684-97, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25520514

ABSTRACT

UNLABELLED: The Epstein-Barr virus (EBV) encodes its own microRNAs (miRNAs); however, their biological roles remain elusive. The commonly used EBV B95-8 strain lacks a 12-kb genomic region, known as BamHI A rightward transcripts (BART) locus, where a number of BART miRNAs are encoded. Here, bacterial artificial chromosome (BAC) technology was used to generate an EBV B95-8 strain in which the 12-kb region was fully restored at its native locus [BART(+) virus]. Epithelial cells were stably infected with either the parental B95-8 virus or the BART(+) virus, and BART miRNA expression was successfully reconstituted in the BART(+) virus-infected cells. Microarray analyses of cellular gene expression identified N-myc downstream regulated gene 1 (NDRG1) as a putative target of BART miRNAs. The NDRG1 protein was barely expressed in B cells, highly expressed in epithelial cells, including primary epithelial cells, and strongly downregulated in the BART(+) virus-infected epithelial cells of various origins. Although in vitro reporter assays identified BART22 as being responsible for the NDRG1 downregulation, EBV genetic analyses revealed that BART22 was not solely responsible; rather, the entire BART miRNA cluster 2 was responsible for the downregulation. Immunohistochemical analyses revealed that the expression level of the NDRG1 protein was downregulated significantly in EBV-positive nasopharyngeal carcinoma specimens. Considering that NDRG1 encodes an epithelial differentiation marker and a suppressor of metastasis, these data implicate a causative relationship between BART miRNA expression and epithelial carcinogenesis in vivo. IMPORTANCE: EBV-related epithelial cancers, such as nasopharyngeal carcinomas and EBV-positive gastric cancers, encompass more than 80% of EBV-related malignancies. Although it is known that they express high levels of virally encoded BART miRNAs, how these miRNAs contribute to EBV-mediated epithelial carcinogenesis remains unknown. Although a number of screenings have been performed to identify targets of viral miRNAs, many targets likely have not been identified, especially in case of epithelial cell infection. This is the first study to use EBV genetics to perform unbiased screens of cellular genes that are differentially expressed in viral miRNA-positive and -negative epithelial cells. The result indicates that multiple EBV-encoded miRNAs cooperatively downregulate NDRG1, an epithelial differentiation marker and suppressor of metastasis. The experimental system described in this study should be useful for further clarifying the mechanism of EBV-mediated epithelial carcinogenesis.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Epithelial Cells/physiology , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , MicroRNAs/metabolism , Neoplasm Metastasis , RNA, Viral/metabolism , Carcinoma , DNA, Viral/genetics , Down-Regulation , Epithelial Cells/virology , Gene Expression Profiling , Genetic Loci , Herpesvirus 4, Human/genetics , Humans , Immunohistochemistry , Microarray Analysis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...