Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Nucleic Acids Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989615

ABSTRACT

The H3K4 methyltransferase SETD1A plays an essential role in both development and cancer. However, essential components involved in SETD1A chromatin binding remain unclear. Here, we discovered that BOD1L exhibits the highest correlated SETD1A co-dependency in human cancer cell lines. BOD1L knockout reduces leukemia cells in vitro and in vivo, and mimics the transcriptional profiles observed in SETD1A knockout cells. The loss of BOD1L immediately reduced SETD1A distribution at transcriptional start sites (TSS), induced transcriptional elongation defect, and increased the RNA polymerase II content at TSS; however, it did not reduce H3K4me3. The Shg1 domain of BOD1L has a DNA binding ability, and a tryptophan residue (W104) in the domain recruits SETD1A to chromatin through the association with SETD1A FLOS domain. In addition, the BOD1L-SETD1A complex associates with transcriptional regulators, including E2Fs. These results reveal that BOD1L mediates chromatin and SETD1A, and regulates the non-canonical function of SETD1A in transcription.

2.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858384

ABSTRACT

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Subject(s)
Atherosclerosis , Inflammation , Interferon Type I , Macrophages , Retroelements , Werner Syndrome , Interferon Type I/metabolism , Werner Syndrome/genetics , Werner Syndrome/metabolism , Humans , Atherosclerosis/metabolism , Atherosclerosis/immunology , Atherosclerosis/genetics , Atherosclerosis/pathology , Macrophages/metabolism , Macrophages/immunology , Retroelements/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Coculture Techniques , Myocytes, Smooth Muscle/metabolism , Endothelial Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Cellular Senescence , Cell Proliferation
3.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923989

ABSTRACT

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Subject(s)
Asthma , Cell Differentiation , Enhancer Elements, Genetic , GATA3 Transcription Factor , Th2 Cells , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Animals , Th2 Cells/immunology , Mice , Cell Differentiation/immunology , Asthma/immunology , Asthma/genetics , Asthma/pathology , Humans , Mice, Knockout , Inflammation/immunology , Inflammation/genetics , Hypersensitivity/immunology , Hypersensitivity/genetics , Polymorphism, Single Nucleotide , Mice, Inbred C57BL
4.
Hypertens Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926588

ABSTRACT

Fetal malnutrition has been reported to induce hypertension and renal injury in adulthood. We hypothesized that this hypertension and renal injury would be associated with abnormal epigenetic memory of stem and progenitor cells contributing to organization in offspring due to fetal malnutrition. We measured blood pressure (BP) for 60 weeks in offspring of pregnant rats fed a normal protein diet (Control), low-protein diet (LP), and LP plus taurine (LPT) in the fetal period. We used western blot analysis to evaluate the expression of αSMA and renin in CD44-positive renal mesenchymal stem cells (MSCs) during differentiation by TGF-ß1. We measured kidney label-retaining cells (LRCs) at 11 weeks of age and formation of endothelial progenitor cells (EPCs) at 60 weeks of age from the offspring with fetal malnutrition. Epigenetics of the renal MSCs at 14 weeks were investigated by ATAC-sequence and RNA-sequence analyses. BP was significantly higher in LP than that in Control and LPT after 45-60 weeks of age. Numbers of LRCs and EPC colonies were significantly lower in LP than in Control. Renal MSCs from LP already showed expression of h-caldesmon, αSMA, LXRα, and renin before their differentiation. Epigenetic analyses identified PAR2, Chac1, and Tspan6 genes in the abnormal differentiation of renal MSCs. These findings suggested that epigenetic abnormalities of stem and progenitor cell memory cause hypertension and renal injury that appear in adulthood of offspring with fetal malnutrition.

5.
NAR Cancer ; 6(2): zcae020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720882

ABSTRACT

Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.

6.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787963

ABSTRACT

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Subject(s)
Heart Failure , Immunity, Innate , Immunologic Memory , Mice, Inbred C57BL , Animals , Heart Failure/immunology , Mice , Male , Multimorbidity , Transforming Growth Factor beta/metabolism , Hematopoietic Stem Cells/immunology , Signal Transduction/immunology , Macrophages/immunology , Trained Immunity
7.
Cureus ; 16(2): e55175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38558649

ABSTRACT

Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.

8.
EBioMedicine ; 102: 105057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490101

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Subject(s)
Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Carcinogenesis/genetics , DNA , Repressor Proteins , Trans-Activators
9.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38490329

ABSTRACT

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Subject(s)
Chromatin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Chromatin/genetics , Histones/genetics , Histones/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Gene Expression Profiling , Receptors, Androgen/metabolism , Kinesins/metabolism
10.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519457

ABSTRACT

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Subject(s)
Induced Pluripotent Stem Cells , MicroRNAs , Humans , Megakaryocytes , Induced Pluripotent Stem Cells/metabolism , Blood Platelets/metabolism , Thrombopoiesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Cancer Res Commun ; 4(2): 279-292, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38240752

ABSTRACT

Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE: Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Cell Line, Tumor , Gene Expression Profiling , Genes, Developmental , Stomach Neoplasms/genetics , Up-Regulation/genetics
12.
Oncology ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262376

ABSTRACT

INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remain unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight non-cancerous colonic epithelial cells using Methylation EPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.

13.
Int J Cancer ; 154(5): 895-911, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37907830

ABSTRACT

Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.


Subject(s)
Epstein-Barr Virus Infections , Exosomes , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/metabolism , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/pathology , Prognosis , Exosomes/metabolism , Tumor Microenvironment , Osteonectin/genetics , Osteonectin/metabolism
14.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139171

ABSTRACT

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Subject(s)
Neoplasms , Repressor Proteins , Humans , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Alternative Splicing , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
15.
EMBO Rep ; 24(10): e57108, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37535603

ABSTRACT

The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.


Subject(s)
Leukemia , Mitosis , Humans , Mitosis/genetics , Cyclins/genetics , Cyclins/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Leukemia/genetics , Poly-ADP-Ribose Binding Proteins/genetics
16.
Cancer Sci ; 114(7): 3003-3013, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37082886

ABSTRACT

Lung adenocarcinoma is classified morphologically into five histological subtypes according to the WHO classification. While each histological subtype correlates with a distinct prognosis, the molecular basis has not been fully elucidated. Here we conducted DNA methylation analysis of 30 lung adenocarcinoma cases annotated with the predominant histological subtypes and three normal lung cases using the Infinium BeadChip. Unsupervised hierarchical clustering analysis revealed three subgroups with different methylation levels: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME). Micropapillary pattern (MPP)-predominant cases and those with MPP components were significantly enriched in HME (p = 0.02 and p = 0.03, respectively). HME cases showed a significantly poor prognosis for recurrence-free survival (p < 0.001) and overall survival (p = 0.006). We identified 365 HME marker genes specifically hypermethylated in HME cases with enrichment of "cell morphogenesis" related genes; 305 IME marker genes hypermethylated in HME and IME, but not in LME, with enrichment "embryonic organ morphogenesis"-related genes; 257 Common marker genes hypermethylated commonly in all cancer cases, with enrichment of "regionalization"-related genes. We extracted surrogate markers for each epigenotype and designed pyrosequencing primers for five HME markers (TCERG1L, CXCL12, FAM181B, HOXA11, GAD2), three IME markers (TBX18, ZNF154, NWD2) and three Common markers (SCT, GJD2, BARHL2). DNA methylation profiling using Infinium data was validated by pyrosequencing, and HME cases defined by pyrosequencing results also showed the worse recurrence-free survival. In conclusion, lung adenocarcinomas are stratified into subtypes with distinct DNA methylation levels, and the high-methylation subtype correlated with MPP-predominant cases and those with MPP components and showed a poor prognosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Methylation/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Prognosis , Biomarkers , Lung Neoplasms/pathology , Neoplasm Staging , Kruppel-Like Transcription Factors/genetics
17.
Gut ; 72(9): 1651-1663, 2023 09.
Article in English | MEDLINE | ID: mdl-36918265

ABSTRACT

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.


Subject(s)
Stomach Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Nuclear Proteins/genetics , Epigenomics , Mutation , Tumor Microenvironment/genetics , DNA-Binding Proteins/genetics , Cell Cycle Proteins/genetics
19.
Int J Cancer ; 152(9): 1847-1862, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36650703

ABSTRACT

Human papillomavirus (HPV) is causally involved in the development of head and neck squamous cell carcinoma (HNSCC). The integration of HPV drives tumorigenesis through expression of oncogenic viral genes as well as genomic alterations in surrounding regions. To elucidate involvement of epigenetic dysregulation in tumorigenesis, we here performed integrated analyses of the epigenome, transcriptome and interactome using ChIP-seq, RNA-seq and Hi-C and 4C-seq for HPV(+) HNSCCs. We analyzed clinical HNSCC using The Cancer Genome Atlas data and found that genes neighboring HPV integration sites were significantly upregulated and were correlated with oncogenic phenotypes in HPV(+) HNSCCs. While we found four HPV integration sites in HPV(+) HNSCC cell line UPCI-SCC-090 through target enrichment sequencing, 4C-seq revealed 0.5 to 40 Mb of HPV-interacting regions (HPVIRs) where host genomic regions interacted with integrated HPV genomes. While 9% of the HPVIRs were amplified and activated epigenetically forming super-enhancers, the remaining non-amplified regions were found to show a significant increase in H3K27ac levels and an upregulation of genes associated with GO terms, for example, Signaling by WNT and Cell Cycle. Among those genes, ITPR3 was significantly upregulated, involving UPCI-SCC-090-specific super-enhancer formation around the ITPR3 promoter and in the 80-kb-downstream region. The knockdown of ITPR3 by siRNA or CRISPR deletions of the distant enhancer region led to a significant suppression of cell proliferation. The epigenetic activation of HPVIRs was also confirmed in other cell lines, UM-SCC-47 and UM-SCC-104. These data indicate that epigenetic activation in HPVIRs contributes, at least partially, to genesis of HPV(+) HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/pathology , Human Papillomavirus Viruses , Head and Neck Neoplasms/genetics , Papillomavirus Infections/complications , Human papillomavirus 16/genetics , Carcinogenesis/genetics , Papillomaviridae/genetics
20.
Cancer Med ; 12(2): 1122-1136, 2023 01.
Article in English | MEDLINE | ID: mdl-35726701

ABSTRACT

Infection with certain viruses is an important cause of cancer. The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium recently analyzed the whole-genome sequencing (WGS) data from 2656 cases across 21 cancer types, and indicated that Epstein-Barr virus (EBV) is detected in many different cancer cases at a higher frequency than previously reported. However, whether EBV-positive cancer cases detected by WGS-based screening correspond to those detected by conventional histopathological techniques is still unclear. In this study, to elucidate the involvement of EBV in various cancers, we reanalyzed the WGS data of the PCAWG cohort combined with the analysis of clinical samples of gastric and pancreatic cancer in our cohort. Based on EBV copy number in each case, we classified tumors into three subgroups: EBV-High, EBV-Low, and EBV-Negative. The EBV-High subgroup was found to be EBV-positive in the cancer cells themselves, whereas the EBV-Low subgroup was EBV-positive in the surrounding lymphocytes. Further, the EBV-Low subgroup showed a significantly worse prognosis for both gastric cancer and across cancer types. In summary, we classified tumors based on EBV copy number and found a unique cancer subgroup, EBV-positive in the surrounding lymphocytes, which was associated with a poor prognosis.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/diagnosis , Lymphocytes/pathology , Stomach Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...