Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
2.
Chronobiol Int ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953516

ABSTRACT

Shift work is a recognized work pattern for nurses worldwide. The disruption of shift workers' biological clocks usually leads to sleep disorders and affects their awareness at work. Eveningness and occupational stress might be effective in causing burnout syndrome. Therefore, this study aimed to evaluate the chronotype, job burnout and perceived stress among Chinese tertiary hospital nurses, and understand the predictors of circadian rhythm in this group. Between July and September 2020, 23 hospitals were randomly selected from 113 tertiary hospitals in Hunan Province. Twenty-five percent of the nurses working in each hospital were targeted for selection. 28.1% and 17.6% of nurses reported eveningness type and morningness type, respectively. The scores for emotional exhaustion, depersonalization, and perceived stress of eveningness nurses were higher than those of morningness counterparts. Eveningness nurses also reported a lower sense of personal accomplishment. Risk factors of eveningness included being under 30 years old, never exercising, having the stressors of late-night shifts and career development, higher levels of emotional exhaustion, sleep latency, sleep duration, and hypnotic use. Shifts may be unavoidable for nurses, nevertheless, understanding the predictors and related factors of chronotype for nurses is necessary for nursing educators and managers to develop a reasonable shift system and appropriate measures to assist nurses in adjusting their work.

3.
Front Aging Neurosci ; 16: 1398641, 2024.
Article in English | MEDLINE | ID: mdl-38946780

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as ß-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-ß clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.

4.
Article in English | MEDLINE | ID: mdl-38842665

ABSTRACT

The precise features of lesions in non-ST-segment elevation myocardial infarction (NSTEMI) patients with total occlusion (TO) of the infarct-related artery (IRA) are still unclear. This study employs optical coherence tomography (OCT) to investigate pathological features in NSTEMI patients with or without IRA TO and explores the relationship between thrombus types and IRA occlusive status. This was a single-center retrospective study. A total of 202 patients diagnosed with NSTEMI were divided into two groups: those with Thrombolysis In Myocardial Infarction (TIMI) flow grade 0 before percutaneous coronary intervention (PCI) (referred to as the TO group, n = 100) and those TIMI flow grade 1-3 (referred to as the Non-TO group, n = 102). Baseline characteristics, coronary angiography findings, and OCT results were collected. Multivariate logistic analysis identified factors influencing TO in NSTEMI. The category of NSTEMI was further subdivided based on the type of electrocardiogram (ECG) into two subgroups: ST segment unoffset myocardial infarction (STUMI) and ST segment depression myocardial infarction (STDMI). This division allows for a more specific classification of NSTEMI cases. The TO group had a younger age, higher male representation, more smokers, lower hypertension and cerebrovascular disease incidence, lower left ventricular ejection fraction (LVEF), and higher creatine kinase myocardial band (CKMB) and creatine kinase (CK) peak levels. In the TO group, LCX served as the main IRA (52.0%), whereas in the Non-TO group, LAD was the predominant IRA (45.1%). Compared to the Non-TO group, OCT findings demonstrated that red thrombus/mixed thrombus was more common in the TO group, along with a lower occurrence of white thrombus (p < 0.001). The TO group exhibited a higher prevalence of STUMI (p = 0.001), whereas STDMI was more commonly observed in the Non-TO group (p = 0.001). NSTEMI presents as STUMI and STDMI distinct entities. Red thrombus/mixed thrombus in IRA often indicates occlusive lesions with STUMI on ECG. White thrombus suggests non-occlusive lesions with STDMI on ECG.

5.
Front Bioeng Biotechnol ; 12: 1410017, 2024.
Article in English | MEDLINE | ID: mdl-38882636

ABSTRACT

Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.

6.
Sci Total Environ ; 944: 173690, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38825198

ABSTRACT

As one of the nine primary non-ferrous metal smelting bases in China, Daye Lake basin was polluted due to diverse human activities. But so far the pollution status and related ecological risks of this region have not been detailly investigated. In current study, pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in eight sediment samples from Daye Lake were quantified. 18S rRNA gene sequencing was employed to profile the nematode community structure within these sediments. Model organism Caenorhabditis elegans (C. elegans) were further applied for a comprehensive ecological risk assessment of Daye Lake. Notably, Cadmium (Cd) was identified as a key driver of ecological risk, reaching an index of 1287.35. At sample point S4, OCPs particularly p,p'-DDT, displayed an extreme ecological risk with a value of 23.19. Cephalobidae and Mononchida showed strong sensitivity to pollutant levels, reinforcing their suitability as robust bioindicators. The composite pollutants in sampled sediments caused oxidative stress in C. elegans, with gene Vit-2 and Mtl-1 as sensitive biomarkers. By employing the multiple analysis methods, our data can offer valuable contributions to environmental monitoring and health risk assessment for composite polluted areas.


Subject(s)
Environmental Monitoring , Hydrocarbons, Chlorinated , Lakes , Metals, Heavy , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , China , Animals , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Metals, Heavy/analysis , Caenorhabditis elegans/drug effects , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments/chemistry , Pesticides/analysis
7.
Clin Transl Sci ; 17(5): e13823, 2024 May.
Article in English | MEDLINE | ID: mdl-38771157

ABSTRACT

This study aims to investigate the mechanism of platelet activation-induced thrombosis in patients with acute non-ST segment elevation myocardial infarction (NSTEMI) by detecting the expression of autophagy-associated proteins in platelets of patients with NSTEMI. A prospective study was conducted on 121 patients with NSTEMI who underwent emergency coronary angiography and optical coherence tomography. The participants were divided into two groups: the ST segment un-offset group (n = 64) and the ST segment depression group (n = 57). We selected a control group of 60 patients without AMI during the same period. The levels of autophagy-associated proteins and the expression of autophagy-associated proteins in platelets were measured using immunofluorescence staining and Western blot. In NSTEMI, the prevalence of red thrombus was higher in the ST segment un-offset myocardial infarction (STUMI) group, whereas white thrombus was more common in the ST segment depression myocardial infarction (STDMI) group. Furthermore, the platelet aggregation rate was significantly higher in the white thrombus group compared with the red thrombus group. Compared with the control group, the autophagy-related protein expression decreased, and the expression of αIIbß3 increased in NSTEMI. The overexpression of Beclin1 could activate platelet autophagy and inhibit the expression of αIIbß3. The results suggested that the increase in platelet aggregation rate in patients with NSTEMI may be potentially related to the change in autophagy. And the overexpression of Beclin1 could reduce the platelet aggregation rate by activating platelet autophagy. Our findings demonstrated that Beclin1 could be a potential therapeutic target for inhibiting platelet aggregation in NSTEMI.


Subject(s)
Autophagy , Beclin-1 , Blood Platelets , Non-ST Elevated Myocardial Infarction , Platelet Activation , Thrombosis , Humans , Beclin-1/metabolism , Male , Female , Non-ST Elevated Myocardial Infarction/blood , Middle Aged , Aged , Prospective Studies , Blood Platelets/metabolism , Thrombosis/blood , Thrombosis/metabolism , Coronary Angiography , Platelet Aggregation , Case-Control Studies , Tomography, Optical Coherence , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
8.
J Cereb Blood Flow Metab ; : 271678X241254716, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748923

ABSTRACT

We studied the regulation dynamics of cerebral blood velocity (CBv) at middle cerebral arteries (MCA) in response to spontaneous changes of arterial blood pressure (ABP), termed dynamic cerebral autoregulation (dCA), and end-tidal CO2 as proxy for blood CO2 tension, termed dynamic vasomotor reactivity (DVR), by analyzing time-series data collected at supine rest from 36 patients with Type-2 Diabetes Mellitus (T2DM) and 22 age/sex-matched non-diabetic controls without arterial hypertension. Our analysis employed a robust dynamic modeling methodology that utilizes Principal Dynamic Modes (PDM) to estimate subject-specific dynamic transformations of spontaneous changes in ABP and end-tidal CO2 (viewed as two "inputs") into changes of CBv at MCA measured via Transcranial Doppler ultrasound (viewed as the "output"). The quantitative results of PDM analysis indicate significant alterations in T2DM of both DVR and dCA in terms of two specific PDM contributions that rise to significance (p < 0.05). Our results further suggest that the observed DVR and dCA alterations may be due to reduction of cholinergic activity (based on previously published results from cholinergic blockade data) that may disturb the sympatho-vagal balance in T2DM. Combination of these two model-based "physio-markers" differentiated T2DM patients from controls (p = 0.0007), indicating diabetes-related alteration of cerebrovascular regulation, with possible diagnostic implications.

9.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600665

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) facilitates the study of cell type heterogeneity and the construction of cell atlas. However, due to its limitations, many genes may be detected to have zero expressions, i.e. dropout events, leading to bias in downstream analyses and hindering the identification and characterization of cell types and cell functions. Although many imputation methods have been developed, their performances are generally lower than expected across different kinds and dimensions of data and application scenarios. Therefore, developing an accurate and robust single-cell gene expression data imputation method is still essential. Considering to maintain the original cell-cell and gene-gene correlations and leverage bulk RNA sequencing (bulk RNA-seq) data information, we propose scINRB, a single-cell gene expression imputation method with network regularization and bulk RNA-seq data. scINRB adopts network-regularized non-negative matrix factorization to ensure that the imputed data maintains the cell-cell and gene-gene similarities and also approaches the gene average expression calculated from bulk RNA-seq data. To evaluate the performance, we test scINRB on simulated and experimental datasets and compare it with other commonly used imputation methods. The results show that scINRB recovers gene expression accurately even in the case of high dropout rates and dimensions, preserves cell-cell and gene-gene similarities and improves various downstream analyses including visualization, clustering and trajectory inference.


Subject(s)
Algorithms , Single-Cell Analysis , RNA-Seq , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Cluster Analysis , Gene Expression , Gene Expression Profiling , Software
10.
Food Chem ; 451: 139437, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678653

ABSTRACT

This study explores the potential for optimizing a sustainable manufacturing process that maintains the essential characteristics of conventional liposomes using food-grade solvents and components. The focus was comparing the physicochemical, morphological, and interfacial properties of liposomes produced with these food-grade ingredients to those made by conventional methods. It was found that there was no significant difference in particle size (195.87 ± 1.40 nm) and ζ-potential (-45.13 ± 0.65 mV) between liposomes made from food-grade and conventional materials. The manufacturing process for liposomes, utilizing food-grade solvents and components, was optimized through the application of Plackett-Burman design and response surface methodology. This approach helped identify key parameters (soy lecithin, ß-sitosterol, W/O ratio) and their optimal values (3.17 g, 0.25 g, 1:2.59). These findings suggest that it is possible to enhance the use of liposomes as an effective and safe delivery system in the food industry, adhering to the strict guidelines set by regulatory agencies.


Subject(s)
Lecithins , Liposomes , Particle Size , Liposomes/chemistry , Lecithins/chemistry , Sitosterols/chemistry , Microfluidics/instrumentation , Glycine max/chemistry
11.
Front Bioeng Biotechnol ; 12: 1327521, 2024.
Article in English | MEDLINE | ID: mdl-38415187

ABSTRACT

In this study, a novel human-size handheld magnetic particle imaging (MPI) system was developed for the high-precision detection of sentinel lymph nodes for breast cancer. The system consisted of a highly sensitive home-made MPI detection probe, a set of concentric coils pair for spatialization, a solenoid coil for uniform excitation at 8 kHz@1.5 mT, and a full mirrored coil set positioned far away from the scanning area. The mirrored coils formed an extremely effective differential pickup structure which suppressed the system noise as high as 100 dB. The different combination of the inner and outer gradient current made the field free point (FFP) move in the Z direction with a uniform intensity of 0.54T/m, while the scanning in the XY direction was implemented mechanically. The third-harmonic signal of the Superparamagnetic Iron Oxide Nanoparticles (SPIONs) at the FFP was detected and then reconstructed synchronously with the current changes. Experiment results showed that the tomographic detection limit was 30 mm in the Z direction, and the sensitivity was about 10 µg Fe SPIONs at 40 mm distance with a spatial resolution of about 5 mm. In the rat experiment, 54 µg intramuscular injected SPIONs were detected successfully in the sentinel lymph node, in which the tracer content was about 1.2% total injected Fe. Additionally, the effective detection time window was confirmed from 4 to 6 min after injection. Relevant clinical ethics are already in the application process. Large mammalian SLNB MPI experiments and 3D preoperative SLNB imaging will be performed in the future.

12.
Toxics ; 12(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38393222

ABSTRACT

Florfenicol (FLO) is a widely used antibacterial drug, which is often detected in the environment. In this paper, the photolysis mechanism of FLO in water was investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The focus of the study is to elucidate the direct photolysis mechanism of FLO in the water environment and the indirect photolysis of free radicals (·OH, ·NO3, and ·SO4-) as active species. The effect of metal ions Ca2+/Mg2+/Zn2+ on the indirect photolysis was also investigated. The results show that the direct photolysis of FLO involves C-C/C-N/C-S bond cleavage, the C5-S7 bond cleavage is most likely to occur, and the C17-C18 cleavage reaction is not easy to occur during the direct photodegradation of FLO. The indirect photolysis of FLO is more likely to occur in the environment than direct photolysis. The main indirect photolysis involves OH-addition, NO3-addition, and SO4-addition on benzene ring. The order of difficulty in the indirect photolysis with ·OH is C2 > C3 > C4 > C5 > C6 > C1, Ca2+ can promote the indirect photolysis with ·OH, and Mg2+/Zn2+ has a dual effect on the indirect photolysis with ·OH. In other words, Mg2+ and Zn2+ can inhibit or promote the indirect photolysis with ·OH. These studies provide important information for theoretical research on the environmental behavior and degradation mechanism of drug molecules.

13.
J Affect Disord ; 351: 863-869, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38342321

ABSTRACT

OBJECTIVES: Depressive symptoms have a considerable negative impact on mental health. This study aimed to understand the relationship between the protein-enriched and anti-inflammatory dietary index scores, modified healthy lifestyle index scores (Modified HLIS), and depressive symptoms. METHODS: This study used convenience sampling to conduct a single-center cross-sectional survey. From January 1, 2015 to December 31, 2020, a total of 287,945 Chinese adults from a health management center of a general hospital completed an online self-reported health questionnaire, which included demographic characteristics, the Dietary Diversity Scale, the Modified Healthy Lifestyle Index Scores and the Patient Health Questionnaire-9. RESULTS: The higher anti-inflammatory dietary index scores (POR = 0.87; 95 % CI: 0.86-0.87; p < 0.001), moderate modified healthy lifestyle index scores (POR = 0.76; 95 % CI: 0.75-0.78; p < 0.001) and sufficient modified healthy lifestyle index scores (POR = 0.53; 95 % CI: 0.52-0.54; p < 0.001) were negatively associated with depressive symptoms, while the higher protein-enriched dietary index scores (POR = 1.01; 95 % CI: 1.01-1.02; p < 0.001) was positively correlated with depressive symptoms. CONCLUSIONS: This study demonstrated that protein-enriched and anti-inflammatory dietary index scores, and multiple healthy lifestyles are associated depressive symptoms in adults.


Subject(s)
Depression , Dietary Patterns , Adult , Humans , Cross-Sectional Studies , Depression/epidemiology , China , Healthy Lifestyle , Anti-Inflammatory Agents
16.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189033, 2024 01.
Article in English | MEDLINE | ID: mdl-38040267

ABSTRACT

Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Bone Neoplasms/drug therapy , Tumor Microenvironment
17.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138549

ABSTRACT

Cell division in eukaryotes is a highly regulated process that is critical to the life of a cell. Dysregulated cell proliferation, often driven by anomalies in cell Cyclin-dependent kinase (CDK) activation, is a key pathological mechanism in cancer. Recently, selective CDK4/6 inhibitors have shown clinical success, particularly in treating advanced-stage estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. This review provides an in-depth analysis of the action mechanism and recent advancements in CDK4/6 inhibitors, categorizing them based on their structural characteristics and origins. Furthermore, it explores proteolysis targeting chimers (PROTACs) targeting CDK4/6. We hope that this review could be of benefit for further research on CDK4/6 inhibitors and PROTACs.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 6 , Humans , Female , Cyclin-Dependent Kinase 4 , Proteolysis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy
18.
Polymers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139895

ABSTRACT

In this work, novel lignin-based nanoparticles (LßNPs) with high acidic tolerance were successfully prepared via electrostatic interaction between ß-alanine and lignin nanoparticles. The effects of the mass ratio of lignin nanoparticles to ß-alanine and pH value on the morphology and particle sizes of LßNPs were investigated with the aim of obtaining the ideal nanoparticles. The optimized LßNPs were spherical in shape with an average particle size of 41.1 ± 14.5 nm and exhibited outstanding structure stability under high acidic conditions (pH < 4). Subsequently, Pickering emulsions stabilized by LßNPs were prepared using olive oil as the oil phase. Additionally, the effects of pH value, droplet size, morphology, and storage stability on Pickering emulsions were also analyzed. The emulsions displayed excellent stability, and were stable against strongly acidic conditions (pH < 4) after 30 days of storage. The study presented a promising approach to preparing lignin-based nanoparticles with high acidic tolerance (an ideal type of stabilizer to prepare emulsions), and exhibited extremely high potential application values in the fields of drug delivery, food additives, and oily wastewater treatment.

19.
ACS Nano ; 17(22): 22580-22590, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37961989

ABSTRACT

Biodegradable and biocompatible microscale energy storage devices are very crucial for environmentally friendly microelectronics and implantable medical applications. Herein, a biodegradable and biocompatible microsupercapacitor (BB-MSC) with satisfying overall performance is realized via the combination of three-dimensional (3D) printing technique and biodegradable materials. Due to the 3D-interconnected structure of electrodes and elaborated design of electrolyte, the as-prepared BB-MSC exhibits superior overall performance than most of biodegradable devices, including a wide operation voltage of 1.8 V, high areal specific capacitance of 251 mF/cm2, good cycle stability, and favorable low-temperature resistance (-20 °C), demonstrative of reliability and practicality of our devices even in frosty environments. Importantly, the smooth degradation has been realized for the BB-MSC after being buried in natural soil for ∼90 days, and its implantation does not affect the healthy status of SD rats. Therefore, this work explores avenues for the design and construction of environmentally friendly and biocompatible microscale energy storage devices.


Subject(s)
Rats, Sprague-Dawley , Animals , Rats , Reproducibility of Results , Electric Capacitance , Electrodes , Physical Phenomena
20.
Support Care Cancer ; 31(12): 674, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930490

ABSTRACT

PURPOSE: Serum cortisol and inflammatory markers may play a role in depression and anxiety, but little is known about whether various features of serum cortisol and inflammatory markers have different associations with depression and anxiety. This study examines the associations of serum cortisol and inflammatory marker features with depression and anxiety in young women with gynecologic cancer. METHODS: Sixty-four young women with gynecologic cancer, aged 15-39 years, were recruited in a tertiary general hospital and a tertiary hospital specializing in oncology in China from May to December 2021. The Hospital Anxiety and Depression Scale was used to evaluate depression and anxiety. Blood samples were taken at 8 am, 4 pm, and 10 pm on the same day to examine the various features (average, variability, and diurnal patterns) of serum cortisol and inflammatory markers, namely C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). RESULTS: Young women with gynecologic cancer who reported depression/anxiety had significantly higher average levels of serum cortisol, IL-6 and TNF-α than those who did not. The dysregulations in the diurnal patterns of serum cortisol and IL-6 were associated with depression and anxiety. Serum cortisol levels were significantly higher in the depression/anxiety group at 10 pm. Depression and anxiety were associated with elevated levels of IL-6 and TNF-α at each time point. CONCLUSION: This study revealed various associations of serum cortisol and inflammatory marker features with depression and anxiety in young women with gynecologic cancer. Further research is needed to understand the role of serum cortisol and inflammatory marker features in the progression of depression and anxiety.


Subject(s)
Genital Neoplasms, Female , Hydrocortisone , Female , Humans , Depression/etiology , Interleukin-6 , Tumor Necrosis Factor-alpha , Anxiety/epidemiology , Anxiety/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...