Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776398

ABSTRACT

Sugarcane (Saccharum spp. hybrid) is a prime feedstock for commercial production of biofuel and table sugar. Optimizing canopy architecture for improved light capture has great potential for elevating biomass yield. LIGULELESS1 (LG1) is involved in leaf ligule and auricle development in grasses. Here, we report CRISPR/Cas9-mediated co-mutagenesis of up to 40 copies/alleles of the putative LG1 in highly polyploid sugarcane (2n = 100-120, x = 10-12). Next generation sequencing revealed co-editing frequencies of 7.4%-100% of the LG1 reads in 16 of the 78 transgenic lines. LG1 mutations resulted in a tuneable leaf angle phenotype that became more upright as co-editing frequency increased. Three lines with loss of function frequencies of ~12%, ~53% and ~95% of lg1 were selected following a randomized greenhouse trial and grown in replicated, multi-row field plots. The co-edited LG1 mutations were stably maintained in vegetative progenies and the extent of co-editing remained constant in field tested lines L26 and L35. Next generation sequencing confirmed the absence of potential off targets. The leaf inclination angle corresponded to light transmission into the canopy and tiller number. Line L35 displaying loss of function in ~12% of the lg1 NGS reads exhibited an 18% increase in dry biomass yield supported by a 56% decrease in leaf inclination angle, a 31% increase in tiller number, and a 25% increase in internode number. The scalable co-editing of LG1 in highly polyploid sugarcane allows fine-tuning of leaf inclination angle, enabling the selection of the ideotype for biomass yield.

2.
Biotechnol Biofuels Bioprod ; 16(1): 56, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36998044

ABSTRACT

Oilcane is a metabolically engineered sugarcane (Saccharum spp. hybrid) that hyper-accumulates lipids in its vegetable biomass to provide an advanced feedstock for biodiesel production. The potential impact of hyper-accumulation of lipids in vegetable biomass on microbiomes and the consequences of altered microbiomes on plant growth and lipid accumulation have not been explored so far. Here, we explore differences in the microbiome structure of different oilcane accessions and non-modified sugarcane. 16S SSU rRNA and ITS rRNA amplicon sequencing were performed to compare the characteristics of the microbiome structure from different plant compartments (leaf, stem, root, rhizosphere, and bulk soil) of four greenhouse-grown oilcane accessions and non-modified sugarcane. Significant differences were only observed in the bacterial microbiomes. In leaf and stem microbiomes, more than 90% of the entire microbiome of non-modified sugarcane and oilcane was dominated by similar core taxa. Taxa associated with Proteobacteria led to differences in the non-modified sugarcane and oilcane microbiome structure. While differences were observed between multiple accessions, accession 1566 was notable in that it was consistently observed to differ in its microbial membership than other accessions and had the lowest abundance of taxa associated with plant-growth-promoting bacteria. Accession 1566 is also unique among oilcane accessions in that it has the highest constitutive expression of the WRI1 transgene. The WRI1 transcription factor is known to contribute to significant changes in the global gene expression profile, impacting plant fatty acid biosynthesis and photomorphogenesis. This study reveals for the first time that genetically modified oilcanes associate with distinct microbiomes. Our findings suggest potential relationships between core taxa, biomass yield, and TAG in oilcane accessions and support further research on the relationship between plant genotypes and their microbiomes.

3.
BMC Biotechnol ; 22(1): 24, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042455

ABSTRACT

BACKGROUND: The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. RESULTS: Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson's correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. CONCLUSIONS: This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Saccharum , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biofuels , Biomass , Carboxylic Ester Hydrolases/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Metabolic Engineering , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Saccharum/metabolism , Triglycerides/metabolism
4.
Mol Breed ; 42(10): 64, 2022 Oct.
Article in English | MEDLINE | ID: mdl-37313011

ABSTRACT

We recently generated oilcane, a metabolically engineered sugarcane with hyper-accumulation of energy dense triacylglycerol in vegetative tissues. Refinement of this strategy in high biomass crops like sugarcane may result in elevated lipid yields that exceed traditional oilseed crops for biodiesel production. This is the first report of agronomic performance, stable co-expression of lipogenic factors, and TAG accumulation in transgenic sugarcane under field conditions. Co-expression of WRI1; DGAT1, OLE1, and RNAi suppression of PXA1 was stable during the 2-year field evaluation and resulted in TAG accumulation up to 4.4% of leaf DW. This TAG accumulation was 70-fold higher than in non-transgenic sugarcane and more than 2-fold higher than previously reported for the same line under greenhouse conditions. TAG accumulation correlated highest with the expression of WRI1. However, constitutive expression of WRI1 was negatively correlated with biomass accumulation. Transgenic lines without WRI1 expression accumulated TAG up to 1.6% of leaf DW and displayed no biomass yield penalty in the plant cane. These findings confirm sugarcane as a promising platform for the production of vegetative lipids and will be used to inform strategies to maximize future biomass and lipid yields. The main conclusion is that constitutive expression of WRI1 in combination with additional lipogenic factors (DGAT1-2, OLE1, PXA1) in sugarcane under field conditions leads to hyper-accumulation of TAG and reduces biomass yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01333-5.

5.
Methods Mol Biol ; 2290: 141-155, 2021.
Article in English | MEDLINE | ID: mdl-34009588

ABSTRACT

RNA interference (RNAi) is an innate cellular mechanism triggered by a double-stranded RNA (dsRNA) molecule causing selective inhibition of gene expression. Here, we demonstrated the RNAi technology for gene silencing in sugarcane for biofuel production. This chapter describes an efficient model system that established to target the caffeic acid O-methyltransferase (COMT) gene and the RNAi construct is designed and delivered through Agrobacterium mediated stable sugarcane transformation. Also, the approach for an analysis of resulting putative transgenic plants for a targeted RNAi mediated gene silencing is described.


Subject(s)
Biofuels/analysis , Gene Silencing/physiology , Saccharum/genetics , Gene Expression Regulation, Plant/genetics , Lignin/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Plants, Genetically Modified/genetics , RNA Interference/physiology , RNA, Double-Stranded/metabolism , Saccharum/metabolism
6.
Plant Mol Biol ; 100(3): 247-263, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30919152

ABSTRACT

KEY MESSAGE: A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.


Subject(s)
Gene Editing/methods , Genome, Plant , Plants, Genetically Modified/genetics , Recombination, Genetic , Saccharum/genetics , Biofuels , Cell Culture Techniques , Cell Line , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Markers , Kanamycin Kinase/genetics , Plant Proteins/genetics
7.
Sci Rep ; 8(1): 14419, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258215

ABSTRACT

Napiergrass (Cenchrus purpureus Schumach) is a tropical forage grass and a promising lignocellulosic biofuel feedstock due to its high biomass yield, persistence, and nutritive value. However, its utilization for breeding has lagged behind other crops due to limited genetic and genomic resources. In this study, next-generation sequencing was first used to survey the genome of napiergrass. Napiergrass sequences displayed high synteny to the pearl millet genome and showed expansions in the pearl millet genome along with genomic rearrangements between the two genomes. An average repeat content of 27.5% was observed in napiergrass including 5,339 simple sequence repeats (SSRs). Furthermore, to construct a high-density genetic map of napiergrass, genotyping-by-sequencing (GBS) was employed in a bi-parental population of 185 F1 hybrids. A total of 512 million high quality reads were generated and 287,093 SNPs were called by using multiple de-novo and reference-based SNP callers. Single dose SNPs were used to construct the first high-density linkage map that resulted in 1,913 SNPs mapped to 14 linkage groups, spanning a length of 1,410 cM and a density of 1 marker per 0.73 cM. This map can be used for many further genetic and genomic studies in napiergrass and related species.


Subject(s)
Cenchrus/genetics , Genome, Plant , Chromosome Mapping , Genetic Linkage , High-Throughput Nucleotide Sequencing , Pennisetum/genetics , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Synteny
8.
Bioresour Technol ; 256: 312-320, 2018 May.
Article in English | MEDLINE | ID: mdl-29455099

ABSTRACT

The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production.


Subject(s)
Biofuels , Saccharomyces cerevisiae , Saccharum , Xylose , Biomass , Ethanol , Fermentation , Glucose , Lignin
9.
Plant Biotechnol J ; 16(4): 856-866, 2018 04.
Article in English | MEDLINE | ID: mdl-28905511

ABSTRACT

Sugarcane is the world's most efficient feedstock for commercial production of bioethanol due to its superior biomass production and accumulation of sucrose in stems. Integrating first- and second-generation ethanol conversion processes will enhance the biofuel yield per unit area by utilizing both sucrose and cell wall-bound sugars for fermentation. RNAi suppression of the lignin biosynthetic gene caffeic acid O-methyltransferase (COMT) has been demonstrated to improve bioethanol production from lignocellulosic biomass. Genome editing has been used in a number of crops for creation of loss of function phenotypes but is very challenging in sugarcane due to its highly polyploid genome. In this study, a conserved region of COMT was targeted with a single-transcription activator-like effector nuclease (TALEN) pair for multi-allelic mutagenesis to modify lignin biosynthesis in sugarcane. Field-grown TALEN-mediated COMT mutants showed up to 19.7% lignin reduction and significantly decreased syringyl to guaiacyl (S/G) ratio resulting in an up to 43.8% improved saccharification efficiency. Biomass production of COMT mutant lines with superior saccharification efficiency did not differ significantly from the original cultivar under replicated field conditions. Sanger sequencing of cloned COMT amplicons (1351-1657 bp) revealed co-editing of 107 of the 109 unique COMT copies/alleles in vegetative progeny of line CB6 using a single TALEN pair. Line CB6 combined altered cell wall composition and drastically improved saccharification efficiency with good agronomic performance. These findings confirm the feasibility of co-mutagenesis of a very large number of target alleles/copies for improvement in crops with complex genomes.


Subject(s)
Glucose/metabolism , Methyltransferases/genetics , Saccharum/genetics , Saccharum/metabolism , Transcription Activator-Like Effector Nucleases/genetics , Biomass , Cell Wall/genetics , Cell Wall/metabolism , Gene Dosage , Gene Expression Regulation, Plant , Glucose/genetics , Lignin/genetics , Lignin/metabolism , Methyltransferases/metabolism , Mutagenesis , Mutation Rate , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Polyploidy , RNA Interference , Saccharum/growth & development
10.
Plant Mol Biol ; 92(4-5): 505-517, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27549390

ABSTRACT

Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5 % along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52-76 % improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.


Subject(s)
Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Gene Expression Regulation, Plant , RNA Interference , Saccharum/enzymology , Saccharum/genetics , Breeding , Cell Wall/enzymology , Cell Wall/metabolism , Saccharum/metabolism
11.
ScientificWorldJournal ; 2014: 562327, 2014.
Article in English | MEDLINE | ID: mdl-24526909

ABSTRACT

Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar "CO (Cu) 9" and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.


Subject(s)
Microsatellite Repeats , Pennisetum/genetics , Pennisetum/metabolism , Phenotype , Quantitative Trait, Heritable , Alleles , Evolution, Molecular , Genetic Association Studies , Genetic Variation , Genotype , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...