Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Sci Rep ; 14(1): 3713, 2024 02 14.
Article En | MEDLINE | ID: mdl-38355678

Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as "black box" models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians' trust in such deep learning systems towards applying them clinically. To facilitate TransXAI model development and results reproducibility, we will share the source code and the pre-trained models after acceptance at https://github.com/razeineldin/TransXAI .


Brain Neoplasms , Glioma , Humans , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology
2.
J Med Syst ; 48(1): 25, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393660

Precise neurosurgical guidance is critical for successful brain surgeries and plays a vital role in all phases of image-guided neurosurgery (IGN). Neuronavigation software enables real-time tracking of surgical tools, ensuring their presentation with high precision in relation to a virtual patient model. Therefore, this work focuses on the development of a novel multimodal IGN system, leveraging deep learning and explainable AI to enhance brain tumor surgery outcomes. The study establishes the clinical and technical requirements of the system for brain tumor surgeries. NeuroIGN adopts a modular architecture, including brain tumor segmentation, patient registration, and explainable output prediction, and integrates open-source packages into an interactive neuronavigational display. The NeuroIGN system components underwent validation and evaluation in both laboratory and simulated operating room (OR) settings. Experimental results demonstrated its accuracy in tumor segmentation and the success of ExplainAI in increasing the trust of medical professionals in deep learning. The proposed system was successfully assembled and set up within 11 min in a pre-clinical OR setting with a tracking accuracy of 0.5 (± 0.1) mm. NeuroIGN was also evaluated as highly useful, with a high frame rate (19 FPS) and real-time ultrasound imaging capabilities. In conclusion, this paper describes not only the development of an open-source multimodal IGN system but also demonstrates the innovative application of deep learning and explainable AI algorithms in enhancing neuronavigation for brain tumor surgeries. By seamlessly integrating pre- and intra-operative patient image data with cutting-edge interventional devices, our experiments underscore the potential for deep learning models to improve the surgical treatment of brain tumors and long-term post-operative outcomes.


Brain Neoplasms , Surgery, Computer-Assisted , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Neuronavigation/methods , Surgery, Computer-Assisted/methods , Neurosurgical Procedures/methods , Ultrasonography , Magnetic Resonance Imaging/methods
3.
Int J Comput Assist Radiol Surg ; 17(9): 1673-1683, 2022 Sep.
Article En | MEDLINE | ID: mdl-35460019

PURPOSE: Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction before applying these methods in clinical practice. METHODS: In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to help make deep learning models transparent. RESULTS: NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can provide information flow visualization on internal layers of a segmentation CNN. CONCLUSION: Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine of cancer patients. The code of NeuroXAI is publicly accessible at https://github.com/razeineldin/NeuroXAI .


Artificial Intelligence , Brain Neoplasms , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer
4.
Int J Comput Assist Radiol Surg ; 15(6): 909-920, 2020 Jun.
Article En | MEDLINE | ID: mdl-32372386

PURPOSE: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid-attenuated inversion recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture, namely DeepSeg, for fully automated detection and segmentation of the brain lesion using FLAIR MRI data. METHODS: The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full-resolution probability map. Based on modified U-Net architecture, different CNN models such as residual neural network (ResNet), dense convolutional network (DenseNet), and NASNet have been utilized in this study. RESULTS: The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of brain tumor segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly. CONCLUSION: This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open source and freely available at https://github.com/razeineldin/DeepSeg/.


Brain Neoplasms/diagnostic imaging , Deep Learning , Glioma/diagnostic imaging , Neural Networks, Computer , Brain Neoplasms/pathology , Disease Progression , Glioma/pathology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
...