Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters











Publication year range
2.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897168

ABSTRACT

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Tumor Microenvironment , Humans , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Neuroendocrine Cells/pathology , Neuroendocrine Cells/metabolism , Female , Male , Prognosis
3.
J Transl Med ; 22(1): 524, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822345

ABSTRACT

BACKGROUND: Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS: Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS: A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION: These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Esthesioneuroblastoma, Olfactory , HLA-DR Antigens , Immunotherapy , Tumor Microenvironment , Humans , Esthesioneuroblastoma, Olfactory/therapy , Esthesioneuroblastoma, Olfactory/pathology , Esthesioneuroblastoma, Olfactory/immunology , Chemokine CXCL10/metabolism , Immunotherapy/methods , Female , Male , Middle Aged , Chemokine CXCL9/metabolism , Tumor Microenvironment/immunology , HLA-DR Antigens/metabolism , Aged , Nose Neoplasms/therapy , Nose Neoplasms/pathology , Nose Neoplasms/immunology , Adult , Gene Expression Regulation, Neoplastic
4.
Mol Cancer Ther ; 23(8): 1109-1123, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657228

ABSTRACT

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on nonhomologous end joining to repair DNA damage. In this study, we investigated if pharmacologic inhibition of the enzyme responsible for nonhomologous end joining, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe additivity model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single-agent TOP2 poisons induced G2M arrest and little apoptotic response while adding DNA-PKi-mediated apoptosis. In vivo, the combination of AZD7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.


Subject(s)
DNA-Activated Protein Kinase , Sarcoma, Ewing , Animals , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/pathology , Standard of Care , Xenograft Model Antitumor Assays
5.
Acta Neuropathol Commun ; 12(1): 56, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589905

ABSTRACT

In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents , Doxorubicin/analogs & derivatives , Glioma , Piperidines , Rats , Animals , Rodentia , Glioma/pathology , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/pathology , Polyethylene Glycols
6.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657065

ABSTRACT

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Subject(s)
Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental , Serine C-Palmitoyltransferase , Sphingolipids , Th17 Cells , Animals , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/cytology , Mice , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Reactive Oxygen Species/metabolism , Glycolysis , Mice, Knockout , Colitis/metabolism , Colitis/pathology , Mice, Inbred C57BL
7.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Article in English | MEDLINE | ID: mdl-38445882

ABSTRACT

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Subject(s)
Brain Neoplasms , Drug Delivery Systems , Photochemotherapy , Photosensitizing Agents , Verteporfin , Animals , Photochemotherapy/methods , Verteporfin/pharmacology , Verteporfin/therapeutic use , Mice , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Glioblastoma/drug therapy , Nanoparticles/chemistry , Disease Models, Animal , Humans , Rats , Liposomes , Cell Line, Tumor , Brain/metabolism , Brain/drug effects
8.
J Hepatocell Carcinoma ; 10: 1973-1990, 2023.
Article in English | MEDLINE | ID: mdl-37954494

ABSTRACT

Objectives: Local and systemic immune responses evoked by locoregional therapies such as cryoablation are incompletely understood. The aim of this study was to characterize cryoablation-related immune response and the capacity of immune drugs to augment immunity upon cryoablation for the treatment of hepatocellular carcinoma (HCC) using a woodchuck hepatocellular carcinoma model. Materials and Methods: Twelve woodchucks chronically infected with woodchuck hepatitis virus and with hepatocellular carcinoma underwent imaging with contrast-enhanced CT. Partial cryoablation of tumors in three woodchucks was performed. Fourteen days after cryoablation, liver tissues were harvested and stained with H&E and TUNEL, and immune infiltrates were quantified. Peripheral blood mononuclear cells (PBMC) were collected from ablated and nonablated woodchucks, labeled with carboxyfluorescein succinimidyl ester (CFSE) and cultured with immune-modulating drugs, including a small PD-L1 antagonist molecule (BMS-202) and three TLR7/8 agonists (DSR 6434, GS-9620, gardiquimod). After incubation, cell replication and immune cell populations were analyzed by flow cytometry. Results: Local immune response in tumors was characterized by an increased number of CD3+ T lymphocytes and natural killer cells in the cryolesion margin compared to other tumor regions. T regulatory cells were found in higher numbers in distant tumors within the liver compared to untreated or control tumors. Cryoablation also augmented the systemic immune response as demonstrated by higher numbers of PBMC responses upon immune drug stimulation in the cryoablation group. Conclusions: Partial cryoablation augmented immune effects in both treated and remote untreated tumor microenvironments, as well as systemically, in woodchucks with HCC. Characterization of these mechanisms may enhance development of novel drug-device combinations for treatment of HCC.

9.
Cell Death Dis ; 14(11): 753, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980415

ABSTRACT

Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Mice , Animals , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Genetic Testing , Ovarian Neoplasms/genetics , Homozygote , Breast Neoplasms/genetics , BRCA1 Protein/genetics , Genetic Predisposition to Disease
10.
Front Oncol ; 13: 1223915, 2023.
Article in English | MEDLINE | ID: mdl-37746286

ABSTRACT

Background: Genome integrity is essential for the survival of an organism. DNA mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, and PMS2) play a critical role in the DNA damage response pathway for genome integrity maintenance. Germline mutations of MMR genes can lead to Lynch syndrome or constitutional mismatch repair deficiency syndrome, resulting in an increased lifetime risk of developing cancer characterized by high microsatellite instability (MSI-H) and high mutation burden. Although immunotherapy has been approved for MMR-deficient (MMRd) cancer patients, the overall response rate needs to be improved and other management options are needed. Methods: To better understand the biology of MMRd cancers, elucidate the resistance mechanisms to immune modulation, and develop vaccines and therapeutic testing platforms for this high-risk population, we generated organoids and an orthotopic mouse model from intestine tumors developed in a Msh2-deficient mouse model, and followed with a detailed characterization. Results: The organoids were shown to be of epithelial origin with stem cell features, to have a high frameshift mutation frequency with MSI-H and chromosome instability, and intra- and inter-tumor heterogeneity. An orthotopic model using intra-cecal implantation of tumor fragments derived from organoids showed progressive tumor growth, resulting in the development of adenocarcinomas mixed with mucinous features and distant metastasis in liver and lymph node. Conclusions: The established organoids with characteristics of MSI-H cancers can be used to study MMRd cancer biology. The orthotopic model, with its distant metastasis and expressing frameshift peptides, is suitable for evaluating the efficacy of neoantigen-based vaccines or anticancer drugs in combination with other therapies.

11.
Clin Cancer Res ; 29(21): 4479-4491, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37616468

ABSTRACT

PURPOSE: Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN: Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS: Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS: RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.


Subject(s)
NAD , Rhabdomyosarcoma , Humans , NAD/metabolism , Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Pyrazoles , Necrosis , Rhabdomyosarcoma/drug therapy , Cell Line, Tumor
12.
Urology ; 179: 58-70, 2023 09.
Article in English | MEDLINE | ID: mdl-37331486

ABSTRACT

OBJECTIVE: To characterize the clinical manifestations and genetic basis of a familial cancer syndrome in patients with lipomas and Birt-Hogg-Dubé-like clinical manifestations including fibrofolliculomas and trichodiscomas and kidney cancer. METHODS: Genomic analysis of blood and renal tumor DNA was performed. Inheritance pattern, phenotypic manifestations, and clinical and surgical management were documented. Cutaneous, subcutaneous, and renal tumor pathologic features were characterized. RESULTS: Affected individuals were found to be at risk for a highly penetrant and lethal form of bilateral, multifocal papillary renal cell carcinoma. Whole genome sequencing identified a germline pathogenic variant in PRDM10 (c.2029 T>C, p.Cys677Arg), which cosegregated with disease. PRDM10 loss of heterozygosity was identified in kidney tumors. PRDM10 was predicted to abrogate expression of FLCN, a transcriptional target of PRDM10, which was confirmed by tumor expression of GPNMB, a TFE3/TFEB target and downstream biomarker of FLCN loss. In addition, a sporadic papillary RCC from the TCGA cohort was identified with a somatic PRDM10 mutation. CONCLUSION: We identified a germline PRDM10 pathogenic variant in association with a highly penetrant, aggressive form of familial papillary RCC, lipomas, and fibrofolliculomas/trichodiscomas. PRDM10 loss of heterozygosity and elevated GPNMB expression in renal tumors indicate that PRDM10 alteration leads to reduced FLCN expression, driving TFE3-induced tumor formation. These findings suggest that individuals with Birt-Hogg-Dubé-like manifestations and subcutaneous lipomas, but without a germline pathogenic FLCN variant, should be screened for germline PRDM10 variants. Importantly, kidney tumors identified in patients with a pathogenic PRDM10 variant should be managed with surgical resection instead of active surveillance.


Subject(s)
Birt-Hogg-Dube Syndrome , Carcinoma, Renal Cell , Kidney Neoplasms , Lipoma , Skin Neoplasms , Humans , Carcinoma, Renal Cell/complications , Carcinoma, Renal Cell/genetics , Birt-Hogg-Dube Syndrome/complications , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Lipoma/complications , Lipoma/genetics , Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , DNA-Binding Proteins , Membrane Glycoproteins
13.
Cancers (Basel) ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37173920

ABSTRACT

Cholangiocarcinoma (CCA) is a heterogenous malignancy that arises from the biliary epithelium and has a poor clinical prognosis. The Hippo/yes-associated protein (YAP) pathway has been reported to affect various aspects of tumorigenesis, with high expression of YAP1 being negatively associated with survival in CCA patients. Thus, we investigated the antitumoral effect of verteporfin, a YAP1 pathway inhibitor, in YAP1/AKT hydrodynamic tail vein injected murine models. We also used flow cytometry and single-cell RNA sequencing (scRNA-seq) to analyze the change in the immune cell profile and malignant cell stemness following verteporfin treatment. Our results demonstrated reduced liver weight and tumor formation in verteporfin-treated groups compared to that of a vehicle-treated group. Immune cell profiling through flow cytometry showed that relative to the vehicle, verteporfin induced a higher ratio of tumor-associated macrophage (TAM) M1/M2 and increased the percentage of activated CD8 T cell population (CD8+CD25+ and CD8+CD69+). scRNA-seq analysis showed significantly increased TAM M1 populations following verteporfin treatment and decreased proportions of stem-like cells within the malignant cell population. In summary, this study indicates that in CCA YAP/AKT murine models, verteporfin reduces tumorigenesis by polarizing anti-tumoral TAM and activating CD8 T cells and decreasing stem-like malignant cell proportions in the tumor microenvironment.

14.
Clin Cancer Res ; 29(18): 3603-3611, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37227187

ABSTRACT

PURPOSE: Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS: In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS: Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS: ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Male , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Camptothecin/adverse effects , Camptothecin/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/administration & dosage
15.
Matrix Biol Plus ; 18: 100132, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37095886

ABSTRACT

Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.

16.
EMBO Mol Med ; 15(5): e16877, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36987696

ABSTRACT

Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.


Subject(s)
Birt-Hogg-Dube Syndrome , Cysts , Kidney Neoplasms , Humans , Mice , Animals , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Transcription Factors , Carcinogenesis/genetics
17.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768931

ABSTRACT

Elevated expression of CD47 in some cancers is associated with poor survival related to its function as an innate immune checkpoint when expressed on tumor cells. In contrast, elevated CD47 expression in cutaneous melanomas is associated with improved survival. Previous studies implicated protective functions of CD47 expressed by immune cells in the melanoma tumor microenvironment. RNA sequencing analysis of responses induced by CD3 and CD28 engagement on wild type and CD47-deficient Jurkat T lymphoblast cells identified additional regulators of T cell function that were also CD47-dependent in mouse CD8 T cells. MYCN mRNA expression was upregulated in CD47-deficient cells but downregulated in CD47-deficient cells following activation. CD47 also regulated alternative splicing that produces two N-MYC isoforms. The CD47 ligand thrombospondin-1 inhibited expression of these MYCN mRNA isoforms, as well as induction of the oncogenic decoy MYCN opposite strand (MYCNOS) RNA during T cell activation. Analysis of mRNA expression data for melanomas in The Cancer Genome Atlas identified a significant coexpression of MYCN with CD47 and known regulators of CD8 T cell function. Thrombospondin-1 inhibited the induction of TIGIT, CD40LG, and MCL1 mRNAs following T cell activation in vitro. Increased mRNA expression of these T cell transcripts and MYCN in melanomas was associated with improved overall survival.


Subject(s)
CD47 Antigen , Melanoma , Mice , Animals , CD47 Antigen/metabolism , N-Myc Proto-Oncogene Protein/genetics , CD8-Positive T-Lymphocytes , Gene Expression , Melanoma/genetics , RNA, Messenger/genetics , Thrombospondins/genetics , Tumor Microenvironment
18.
Breast Cancer Res ; 24(1): 75, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333737

ABSTRACT

BACKGROUND: Breast cancer is a heterogenous disease with several histological and molecular subtypes. Models that represent these subtypes are essential for translational research aimed at improving clinical strategy for targeted therapeutics. METHODS: Different combinations of genetic aberrations (Brca1 and Trp53 loss, and inhibition of proteins of the Rb family) were induced in the mammary gland by injection of adenovirus expressing Cre recombinase into the mammary ducts of adult genetically engineered mice. Mammary tumors with different genetic aberrations were classified into molecular subtypes based on expression of molecular markers and RNAseq analysis. In vitro potency assays and Western blots were used to examine their drug sensitivities. RESULTS: Induction of Brca1 and Trp53 loss in mammary ductal epithelium resulted in development of basal-like hormone receptor (HR)-negative mammary tumors. Inhibition of Rb and Trp53 loss or the combination of Rb, Trp53 and Brca1 aberrations resulted in development of luminal ductal carcinoma positive for ER, PR, and Her2 expression. HR positivity in tumors with Rb, Trp53 and Brca1 aberrations indicated that functionality of the Rb pathway rather than Brca1 status affected HR status in these models. Mammary tumor gene expression profiles recapitulated human basal-like or luminal B breast cancer signatures, but HR-positive luminal cancer models were endocrine resistant and exhibited upregulation of PI3K signaling and sensitivity to this pathway inhibition. Furthermore, both tumor subtypes were resistant to CDK4/6 inhibition. CONCLUSIONS: Examination of molecular expression profiles and drug sensitivities of tumors indicate that these breast cancer models can be utilized as a translational platform for evaluation of targeted combinations to improve chemotherapeutic response in patients that no longer respond to hormone therapy or that are resistant to CDK4/6 inhibition.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Mammary Neoplasms, Animal , Mice , Animals , Humans , Female , Mammary Glands, Human/metabolism , Phosphatidylinositol 3-Kinases , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Mammary Neoplasms, Animal/pathology , Epithelium/metabolism , Hormones , BRCA1 Protein/genetics
19.
Sci Rep ; 12(1): 18229, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309550

ABSTRACT

The immune response to radiofrequency ablation (RFA) and cryoablation (CRA) was characterized and compared in a colon cancer mouse model. All studies were conducted under a research protocol approved by the National Institutes of Health, Clinical Center, Animal Care and Use Committee. BALB/cJ mice were inoculated with CT26 cells, and randomized to RFA, CRA, or sham treatment. Mice were sacrificed 3 days post-treatment, and tumor, spleen, and serum were harvested. Cell death was determined by Caspase-3 immunohistochemical and TUNEL stains. Immune response was analyzed using flow cytometry, serum cytokine assay and immunohistochemistry. Cell death, necrosis, and apoptosis induced by ablation were comparable in RFA and CRA. Decreased frequency of systemic T-regulatory cells was found in the CRA group. Both RFA and CRA reduced frequencies of several myeloid-derived suppressor cell (MDSC) subpopulations. RFA induced pro-inflammatory cytokine secretion including TNF-α and IL-12 as well as anti-inflammatory cytokines IL-5, and IL-10. CRA augmented secretion of a wider array of cytokines compared to RFA with both pro- and anti-inflammatory properties including IL-1ß, IL-5, IL-6, IL-10, and KC GRO. In the tumor microenvironment, RFA reduced the number of T-regulatory cells, a finding not observed with CRA. Reduction of immune suppression via decreases in T-regulatory cells and MDSC was found to be induced by RFA or CRA. CRA augmented a wider range of cytokines than RFA, which were mainly pro-inflammatory, but also anti-inflammatory. In the tumor microenvironment, RFA demonstrated more pronounced anti-tumoral immunity. Further delineation of specific immunomodulation induced by ablation could inform drug-device development and may play a role in future hypothesis-driven immunomodulatory paradigms that combine immunotherapy drugs with tumor destruction for the treatment of metastatic colon cancer.


Subject(s)
Catheter Ablation , Colonic Neoplasms , Cryosurgery , Radiofrequency Ablation , Animals , Mice , Catheter Ablation/methods , Colonic Neoplasms/surgery , Cytokines , Disease Models, Animal , Immunity , Interleukin-10 , Interleukin-5 , Tumor Microenvironment , Random Allocation
20.
Cancers (Basel) ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35804881

ABSTRACT

Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g., asbestos). Genomic studies have revealed that the most frequent genetic lesions in human MMe are mutations in tumor suppressor genes. Several genetically engineered mouse models have been generated by introducing the same genetic lesions found in human MMe. However, most of these models require specialized breeding facilities and long-term exposure of mice to asbestos for MMe development. Thus, an alternative model with high tumor penetrance without asbestos is urgently needed. We characterized an orthotopic model using MMe cells derived from Cdkn2a+/-;Nf2+/- mice chronically injected with asbestos. These MMe cells were tumorigenic upon intraperitoneal injection. Moreover, MMe cells showed mixed chromosome and microsatellite instability, supporting the notion that genomic instability is relevant in MMe pathogenesis. In addition, microsatellite markers were detectable in the plasma of tumor-bearing mice, indicating a potential use for early cancer detection and monitoring the effects of interventions. This orthotopic model with rapid development of MMe without asbestos exposure represents genomic instability and specific molecular targets for therapeutic or preventive interventions to enable preclinical proof of concept for the intervention in an immunocompetent setting.

SELECTION OF CITATIONS
SEARCH DETAIL