Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 5504-5512, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278768

ABSTRACT

New insights into the unique biochemical properties of riboflavin (Rf), also known as vitamin B2, are leading to the development of its use not only as a vitamin supplement but also as a potential anti-inflammatory, immunomodulatory, antioxidant, anticancer, and antiviral agent, where it may play a role as an inhibitor of viral proteinases. At the same time, the comparison of the pharmacoactivity of Rf with its known metabolites, namely, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is very complicated due to its poor water solubility: 0.1-0.3 g/L versus 67 g/L for FMN and 50 g/L for FAD, which is the limiting factor for its administration in clinical practice. In this study, we report the recrystallization procedure of the type A Rf crystals into the slightly hydrophobic type B/C and a new hydrophilic crystal form that has been termed the P type. Our method of Rf crystal modification based on recrystallization from dilute alkaline solution provides an unprecedented extremely high water solubility of Rf, reaching 23.5 g/L. A comprehensive study of the physicochemical properties of type P riboflavin showed increased photodynamic therapeutic activity compared to the known types A and B/C against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. Importantly, our work not only demonstrates a simple and inexpensive method for the synthesis of riboflavin with high solubility, which should lead to increased bioactivity, but also opens up opportunities for improving both known and new therapeutic applications of vitamin B2.


Subject(s)
Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Flavin-Adenine Dinucleotide/metabolism , Solubility , Riboflavin , Escherichia coli/metabolism , Water
2.
Sci Rep ; 13(1): 15079, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699970

ABSTRACT

As a non-metallic organic semiconductor, graphitic carbon nitride (g-C3N4) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-C3N4, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-C3N4. Here, we synthesized non-metal-doped highly crystalline g-C3N4 by one-pot calcination method, which enhanced the photocatalytic activity of g-C3N4 such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L-1 of O-doped g-C3N4 and S-doped g-C3N4, 20 mg L-1 MB, 0.25 ml s-1 O2, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical [Formula: see text]. More importantly, the sonophotocatalytic degradation ability of O-doped g-C3N4 and S-doped g-C3N4 was remarkably sustained even after the sixth consecutive run.

3.
Materials (Basel) ; 15(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431487

ABSTRACT

The optical and magneto-optical characteristics of KTb3F10 crystals in the transition region of 5D4 → 7F6 4f8 configurations of the Tb3+ ion at temperatures of 90 and 300 K were studied. The schemes of the optical transitions in the KTb3F10 crystals were constructed, and the energies of most of the Stark sublevels of the ground 7F6 and excited 5D4 multiplets of the Tb3+ ion split by the C4v symmetry crystal environment were determined. The presence of three- and two-doublet states in the energy spectra of the Tb3+ion multiplets 7F6 and 5D4, respectively, was established, which is in good agreement with theoretical predictions. The use of the wavefunctions of the Stark sublevels of multiplets split by a tetragonal crystal field and combining in the studied optical transition made it possible to explain some of the magnetic and magneto-optical features observed in the KTb3F10 single crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...