Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 29: 101211, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35079641

ABSTRACT

Deficiency of NEIL3, a DNA repair enzyme, has significant impact on mouse physiology, including vascular biology and gut health, processes related to aging. Leukocyte telomere length (LTL) is suggested as a marker of biological aging, and shortened LTL is associated with increased risk of cardiovascular disease. NEIL3 has been shown to repair DNA damage in telomere regions in vitro. Herein, we explored the role of NEIL3 in telomere maintenance in vivo by studying bone marrow cells from atherosclerosis-prone NEIL3-deficient mice. We found shortened telomeres and decreased activity of the telomerase enzyme in bone marrow cells derived from Apoe -/- Neil3 -/- as compared to Apoe -/- mice. Furthermore, Apoe -/- Neil3 -/- mice had decreased leukocyte levels as compared to Apoe -/- mice, both in bone marrow and in peripheral blood. Finally, RNA sequencing of bone marrow cells from Apoe -/- Neil3 -/- and Apoe -/- mice revealed different expression levels of genes involved in cell cycle regulation, cellular senescence and telomere protection. This study points to NEIL3 as a telomere-protecting protein in murine bone marrow in vivo.

2.
Sci Rep ; 11(1): 19749, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611194

ABSTRACT

Atherosclerosis and its consequences cause considerable morbidity and mortality world-wide. We have previously shown that expression of the DNA glycosylase NEIL3 is regulated in human atherosclerotic plaques, and that NEIL3-deficiency enhances atherogenesis in Apoe-/- mice. Herein, we identified a time point prior to quantifiable differences in atherosclerosis between Apoe-/-Neil3-/- mice and Apoe-/- mice. Mice at this age were selected to explore the metabolic and pathophysiological processes preceding extensive atherogenesis in NEIL3-deficient mice. Untargeted metabolomic analysis of young Apoe-/-Neil3-/- mice revealed significant metabolic disturbances as compared to mice expressing NEIL3, particularly in metabolites dependent on the gut microbiota. 16S rRNA gene sequencing of fecal bacterial DNA indeed confirmed that the NEIL3-deficient mice had altered gut microbiota, as well as increased circulating levels of the bacterially derived molecule LPS. The mice were challenged with a FITC-conjugated dextran to explore gut permeability, which was significantly increased in the NEIL3-deficient mice. Further, immunohistochemistry showed increased levels of the proliferation marker Ki67 in the colonic epithelium of NEIL3-deficient mice, suggesting increased proliferation of intestinal cells and gut leakage. We suggest that these metabolic alterations serve as drivers of atherosclerosis in NEIL3-deficient mice.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Energy Metabolism , Intestinal Mucosa/metabolism , N-Glycosyl Hydrolases/deficiency , Age Factors , Animals , Atherosclerosis/pathology , Biomarkers , Disease Models, Animal , Disease Susceptibility , Dysbiosis , Gastrointestinal Microbiome , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Mice , Mice, Knockout , Permeability
3.
Atherosclerosis ; 324: 123-132, 2021 05.
Article in English | MEDLINE | ID: mdl-33714552

ABSTRACT

BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway.


Subject(s)
Atherosclerosis , DNA Glycosylases , Myocytes, Smooth Muscle/enzymology , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Cell Proliferation , Cells, Cultured , DNA Glycosylases/genetics , Endodeoxyribonucleases , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/cytology , N-Glycosyl Hydrolases , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...