Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Cell Biol ; 103(2): 151420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759515

ABSTRACT

Varicose veins are the most common venous disorder in humans and are characterized by hemodynamic instability due to valvular insufficiency and orthostatic lifestyle factors. It is unclear how changes in biomechanical signals cause aberrant remodeling of the vein wall. Our previous studies suggest that Notch signaling is implicated in varicose vein arterialization. In the arterial system, mechanoresponsive ETS1 is a transcriptional activator of the endothelial Notch, but its involvement in sensing disrupted venous flow and varicose vein formation has not been investigated. Here, we use human varicose veins and cultured human venous endothelial cells to show that disturbed venous shear stress activates ETS1-NOTCH4/DLL4 signaling. Notch components were highly expressed in the neointima, whereas ETS1 was upregulated in all histological layers of varicose veins. In vitro microfluidic flow-based studies demonstrate that even minute changes in venous flow patterns enhance ETS1-NOTCH4/DLL4 signaling. Uniform venous shear stress, albeit an inherently low-flow system, does not induce ETS1 and Notch proteins. ETS1 activation under altered flow was mediated primarily by MEK1/2 and, to a lesser extent, by MEK5 but was independent of p38 MAP kinase. Endothelial cell-specific ETS1 knockdown prevented disturbed flow-induced NOTCH4/DLL4 expression. TK216, an inhibitor of ETS-family, prevented the acquisition of arterial molecular identity and loss of endothelial integrity in cells exposed to the ensuing altered shear stress. We conclude that ETS1 senses blood flow disturbances and may promote venous remodeling by inducing endothelial dysfunction. Targeting ETS1 rather than downstream Notch proteins could be an effective and safe strategy to develop varicose vein therapies.


Subject(s)
Proto-Oncogene Protein c-ets-1 , Receptor, Notch4 , Signal Transduction , Varicose Veins , Humans , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Receptor, Notch4/metabolism , Varicose Veins/metabolism , Varicose Veins/pathology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Stress, Mechanical , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Human Umbilical Vein Endothelial Cells/metabolism
2.
Cell Mol Biol Lett ; 28(1): 22, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934253

ABSTRACT

BACKGROUND: Cerebral arteriovenous malformations (cAVM) are a significant cause of intracranial hemorrhagic stroke and brain damage. The arteriovenous junctions in AVM nidus are known to have hemodynamic disturbances such as altered shear stress, which could lead to endothelial dysfunction. The molecular mechanisms coupling shear stress and endothelial dysfunction in cAVMs are poorly understood. We speculated that disturbed blood flow in artery-vein junctions activates Notch receptors and promotes endothelial mesenchymal plasticity during cAVM formation. METHODS: We investigated the expression profile of endothelial mesenchymal transition (EndMT) and cell adhesion markers, as well as activated Notch receptors, in 18 human cAVM samples and 15 control brain tissues, by quantitative real-time PCR (qRT-PCR) and immunohistochemical evaluation. Employing a combination of a microfluidic system, qRT-PCR, immunofluorescence, as well as invasion and inhibitor assays, the effects of various shear stress conditions on Notch-induced EndMT and invasive potential of human cerebral microvascular endothelial cells (hCMEC/d3) were analyzed. RESULTS: We found evidence for EndMT and enhanced expression of activated Notch intracellular domain (NICD3 and NICD4) in human AVM nidus samples. The expression of transmembrane adhesion receptor integrin α9/ß1 is significantly reduced in cAVM nidal vessels. Cell-cell adhesion proteins such as VE-cadherin and N-cadherin were differentially expressed in AVM nidus compared with control brain tissues. Using well-characterized hCMECs, we show that altered fluid shear stress steers Notch3 nuclear translocation and promotes SNAI1/2 expression and nuclear localization. Oscillatory flow downregulates integrin α9/ß1 and VE-cadherin expression, while N-cadherin expression and endothelial cell invasiveness are augmented. Gamma-secretase inhibitor RO4929097, and to a lesser level DAPT, prevent the mesenchymal transition and invasiveness of cerebral microvascular endothelial cells exposed to oscillatory fluid flow. CONCLUSIONS: Our study provides, for the first time, evidence for the role of oscillatory shear stress in mediating the EndMT process and dysregulated expression of cell adhesion molecules, especially multifunctional integrin α9/ß1 in human cAVM nidus. Concomitantly, our findings indicate the potential use of small-molecular inhibitors such as RO4929097 in the less-invasive therapeutic management of cAVMs.


Subject(s)
Endothelial Cells , Intracranial Arteriovenous Malformations , Humans , Endothelial Cells/metabolism , Intracranial Arteriovenous Malformations/metabolism , Receptors, Notch/metabolism , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition
3.
Mol Cell Biochem ; 476(1): 125-143, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32844345

ABSTRACT

Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.


Subject(s)
Epigenesis, Genetic , Hemodynamics , Vascular Diseases/genetics , Vascular Diseases/metabolism , Animals , Atherosclerosis/metabolism , Biomarkers/metabolism , DNA Methylation , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Mice , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL