Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38415852

Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.


Melanosis , Passeriformes , Songbirds , Animals , Songbirds/genetics , Australia , Passeriformes/genetics , Polymorphism, Single Nucleotide , Feathers , Pigmentation , Color
2.
Horm Behav ; 154: 105393, 2023 08.
Article En | MEDLINE | ID: mdl-37331309

Historic bias toward study of sex hormones and sexual ornamentation in males currently constrains our perspective of hormone-behavior-phenotype relationships. Resolving how ornamented female phenotypes evolve is particularly important for understanding the diversity of social signals across taxa. Studies of both males and females in taxa with variable female phenotypes are needed to establish whether sexes share mechanisms underlying expression of signaling phenotypes and behavior. White-shouldered Fairywren (Malurus alboscapulatus) subspecies vary in female ornamentation, baseline circulating androgens, and response to territorial intrusion. The moretoni ornamented female subspecies is characterized by higher female, but lower male baseline androgens, and a stronger pair territorial response relative to pairs from the lorentzi unornamented female subspecies. Here we address whether subspecific differences in female ornamentation, baseline androgens, and pair territoriality are associated with ability to elevate androgens following gonadotropin releasing hormone (GnRH) challenge and in response to simulated territorial intrusion. We find that subspecies do not differ in their capacity to produce androgens in either sex following GnRH or simulated territorial intrusion (STI) challenges. STI-induced androgens were predictive of degree of response to territorial intrusions in females only, but the direction of the effect was mixed. GnRH-induced androgens did not correlate with response to simulated intruders, nor did females sampled during intrusion elevate androgens relative to flushed controls, suggesting that increased androgens are not necessary for the expression of territorial defense behaviors. Collectively, our results suggest that capacity to produce androgens does not underlie subspecific patterns of female ornamentation, territoriality, and baseline plasma androgens.


Androgens , Passeriformes , Animals , Female , Male , Androgens/pharmacology , Territoriality , Testosterone , Passeriformes/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Aggression/physiology
3.
Mol Biol Evol ; 40(4)2023 04 04.
Article En | MEDLINE | ID: mdl-36911907

Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.


Passeriformes , Songbirds , Animals , Male , Testosterone/metabolism , Pigmentation/genetics , Carotenoids/metabolism , Songbirds/genetics , Feathers , Gene Expression
4.
Environ Res ; 227: 115711, 2023 06 15.
Article En | MEDLINE | ID: mdl-36940819

Lead exposure is a concern in urban ecosystems, with physiological and behavioral effects well documented in humans. Wildlife inhabiting urban ecosystems are also exposed to lead, yet little work has documented the sublethal effects of lead exposure in urban wildlife. We studied northern mockingbirds (Mimus polyglottos) in three neighborhoods of New Orleans, Louisiana, two with high soil lead and one with low soil lead, to better understand how lead exposure may influence mockingbirds' reproductive biology. We monitored nesting attempts, measured lead concentrations in blood and feathers of nestling mockingbirds, documented egg hatching and nesting success, and assessed rates of sexual promiscuity in relation to neighborhood soil lead levels. We found that nestling mockingbirds' blood and feather lead levels reflected the soil lead levels of their neighborhoods and nestling blood lead levels were similar to those of adult mockingbirds in the same neighborhoods. Nest success, as evaluated by daily nest survival rates, was higher in the lower lead neighborhood. Clutch sizes varied substantially across neighborhoods, but rates of unhatched eggs did not covary with neighborhood lead levels, suggesting that other drivers are influencing variation in clutch sizes and hatching success in urban habitats. At least one-third of nestling mockingbirds were sired by an extra-pair male, and there was no relationship between extra-pair paternity rates and neighborhood lead levels. This study provides insight on how lead contamination may influence reproduction in urban-dwelling wildlife and suggests that nestling birds could serve as useful bioindicators of lead levels in urban neighborhoods.


Passeriformes , Songbirds , Animals , Humans , Male , Songbirds/physiology , Lead/analysis , Ecosystem , Passeriformes/physiology , Reproduction , Animals, Wild , Soil
5.
Am Nat ; 201(1): 52-64, 2023 01.
Article En | MEDLINE | ID: mdl-36524929

AbstractPollen dispersal is a key evolutionary and ecological process, but the degree to which variation in the density of concurrently flowering conspecific plants (i.e., coflowering density) shapes pollination patterns remains understudied. We monitored coflowering density and corresponding pollination patterns of the insect-pollinated palm Oenocarpus bataua in northwestern Ecuador and found that the influence of coflowering density on these patterns was scale dependent: high neighborhood densities were associated with reductions in pollen dispersal distance and gametic diversity of progeny arrays, whereas we observed the opposite pattern at the landscape scale. In addition, neighborhood coflowering density also impacted forward pollen dispersal kernel parameters, suggesting that low neighborhood densities encourage pollen movement and may promote gene flow and genetic diversity. Our work reveals how coflowering density at different spatial scales influences pollen movement, which in turn informs our broader understanding of the mechanisms underlying patterns of genetic diversity and gene flow within populations of plants.


Arecaceae , Pollination , Pollen/genetics , Gene Flow , Reproduction/genetics , Arecaceae/genetics , Genetic Variation , Microsatellite Repeats
6.
Behav Processes ; 202: 104735, 2022 Oct.
Article En | MEDLINE | ID: mdl-35995314

Agonistic conflict is ubiquitous throughout taxa, although the intensity of aggression observed is often highly variable across contexts. For socially monogamous species, a coordinated effort by both pair members can improve the chances of successfully warding off challengers and reinforce pair bonds. However, the intensity of aggression exerted by any one pair member may vary with respect to contextual factors, including the intensity of their mate's aggression. Thus, experimentally exploring how individuals respond to potential rivals via multiple assays with varying social contexts can advance our basic understanding of how aggression varies in socially monogamous systems. We used simulated territorial intrusion and mirror image simulation assays to explore this issue in white-shouldered fairywrens (Malurus alboscapulatus moretoni) of Papua New Guinea. While males tended to be more responsive than females during simulated territorial intrusions, females were more aggressive towards their mirrored reflection than males. Further, individual females that were most aggressive in mirror image simulations were the least aggressive during simulated territorial intrusions, whereas males were inconsistent. These results suggest that female behavioral phenotypes appear to be flexible, relative to context. We discuss how multiple commonly used measurements of aggression might in fact measure different types of responses.


Songbirds , Aggression/physiology , Animals , Female , Male , Pair Bond , Songbirds/physiology , Territoriality , Testosterone
7.
Evolution ; 76(8): 1720-1736, 2022 08.
Article En | MEDLINE | ID: mdl-35748580

Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.


Passeriformes , Songbirds , Animals , Feathers/physiology , Female , Male , Passeriformes/genetics , Pigmentation/genetics , Sex Characteristics , Songbirds/genetics , Testosterone
8.
Horm Behav ; 142: 105158, 2022 06.
Article En | MEDLINE | ID: mdl-35378335

Androgens like testosterone mediate suites of physical and behavioral traits across vertebrates, and circulation varies considerably across and within taxa. However, an understanding of the causal factors of variation in circulating testosterone has proven difficult despite decades of research. According to the challenge hypothesis, agonistic interactions between males immediately prior to the breeding season produce the highest levels of testosterone measured during this period. While many studies have provided support for this hypothesis, most species do not respond to male-male competition by elevating testosterone. As a result, a recent revision of the hypothesis ('challenge hypothesis 2.0') places male-female interactions as the primary cause of rapid elevations in testosterone circulation in male vertebrates. Here, we offer a test of both iterations of the challenge hypothesis in a tropical bird species. We first illustrate that male White-shouldered Fairywrens (Malurus alboscapulatus) differ by subspecies in plasma androgen concentrations. Then we use a social network approach to find that males of the subspecies with higher androgens are characterized by greater social interaction scores, including more time aggregating to perform sexual displays. Next, we use a controlled experiment to test whether males respond to simulated territorial intrusion and/or courtship competition contexts by elevating androgens. We found that males elevated androgens during territorial intrusions relative to flushed controls, however, males sampled during courtship competitions had greater plasma androgens both relative to controls and males sampled while defending territories. Ultimately, our results are consistent with challenge hypothesis 2.0, as sexual interactions with extra-pair females were associated with greater elevation of androgens than territorial disputes.


Androgens , Passeriformes , Aggression , Animals , Female , Male , Reproduction , Seasons , Territoriality , Testosterone
9.
Ecol Evol ; 11(23): 17352-17363, 2021 Dec.
Article En | MEDLINE | ID: mdl-34938513

Conspicuous female signals have recently received substantial scientific attention, but it remains unclear if their evolution is the result of selection acting on females independently of males or if mutual selection facilitates female change. Species that express female, but not male, phenotypic variation among populations represents a useful opportunity to address this knowledge gap. White-shouldered fairywrens (Malurus alboscapulatus) are tropical songbirds with a well-resolved phylogeny where female, but not male, coloration varies allopatrically across subspecies. We explored how four distinct signaling modalities, each putatively associated with increased social selection, are expressed in two populations that vary in competitive pressure on females. Females in a derived subspecies (M. a. moretoni) have evolved more ornamented plumage and have shorter tails (a signal of social dominance) relative to an ancestral subspecies (M. a. lorentzi) with drab females. In response to simulated territorial intrusions broadcasting female song, both sexes of M. a. moretoni are more aggressive and more coordinated with their mates in both movement and vocalizations. Finally, M. a. moretoni songs are more complex than M. a. lorentzi, but song complexity does not vary between sexes in either population. These results suggest that correlated phenotypic shifts in coloration and tail morphology in females as well as song complexity and aggression in both sexes may have occurred in response to changes in the intensity of social selection pressures. This highlights increased competitive pressures in both sexes can facilitate the evolution of complex multimodal signals.

10.
Mol Ecol ; 30(18): 4353-4367, 2021 09.
Article En | MEDLINE | ID: mdl-34216497

Genetic diversity shapes the evolutionary potential of plant populations. For outcrossing plants, genetic diversity is influenced by effective population size and by dispersal, first of paternal gametes through pollen, and then of paternal and maternal gametes through seeds. Forest loss often reduces genetic diversity, but the degree to which it differentially impacts the paternal and maternal contributions to genetic diversity and the spatial scale at which these impacts are most pronounced are poorly understood. To address these questions, we genotyped 504 seedlings of the animal-dispersed palm Oenocarpus bataua collected from 29 widely distributed sites across Ecuador and decomposed the contribution of paternal and maternal gametes to overall genetic diversity. The amount of forest cover at a landscape scale (>10 km radius) had an equally significant positive association with both male and female gametic diversity. In addition, there was a significant positive association between forest cover and effective population size. Stronger fine-scale spatial genetic structure for female versus male gametes was observed at sites with low forest cover, but this did not scale up to differences in male versus female gametic diversity. These findings show that reductions in forest cover at spatial scales much larger than those typically evaluated in ecological studies lead to significant, and equivalent, decreases of diversity in both male and female gametes, and that this association between landscape level forest loss and genetic diversity may be driven directly by reductions in effective population size of O. bataua, rather than by indirect disruptions to local dispersal processes.


Arecaceae , Seedlings , Animals , Arecaceae/genetics , Forests , Genetic Variation , Pollen/genetics , Seedlings/genetics , Seeds/genetics
11.
Ecol Evol ; 11(24): 17901-17919, 2021 Dec.
Article En | MEDLINE | ID: mdl-35003646

Historically, bird song complexity was thought to evolve primarily through sexual selection on males; yet, in many species, both sexes sing and selection pressure on both sexes may be broader. Previous research suggests competition for mates and resources during short, synchronous breeding seasons leads to more elaborate male songs at high, temperate latitudes. Furthermore, we expect male-female song structure and elaboration to be more similar at lower, tropical latitudes, where longer breeding seasons and year-round territoriality yield similar social selection pressures in both sexes. However, studies seldom take both types of selective pressures and sexes into account. We examined song in both sexes in 15 populations of nine-fairy-wren species (Maluridae), a Southern Hemisphere clade with female song. We compared song elaboration (in both sexes) and sexual song dimorphism to latitude and life-history variables tied to sexual and social selection pressures and sex roles. Our results suggest that song elaboration evolved in part due to sexual competition in males: male songs were longer than female songs in populations with low male survival and less male provisioning. Also, female songs evolved independently of male songs: female songs were slower paced than male songs, although only in less synchronously breeding populations. We also found male and female songs were more similar when parental care was more equal and when male survival was high, which provides strong evidence that sex role similarity correlates with male-female song similarity. Contrary to Northern Hemisphere latitudinal patterns, male and female songs were more similar at higher, temperate latitudes. These results suggest that selection on song can be sex specific, with male song elaboration favored in contexts with stronger sexual selection. At the same time, selection pressures associated with sex role similarity appear to favor sex role similarity in song structure.

12.
Proc Biol Sci ; 287(1935): 20201687, 2020 09 30.
Article En | MEDLINE | ID: mdl-32933448

Carotenoid pigments produce most red, orange and yellow colours in vertebrates. This coloration can serve as an honest signal of quality that mediates social and mating interactions, but our understanding of the underlying mechanisms that control carotenoid signal production, including how different physiological pathways interact to shape and maintain these signals, remains incomplete. We investigated the role of testosterone in mediating gene expression associated with a red plumage sexual signal in red-backed fairywrens (Malurus melanocephalus). In this species, males within a single population can flexibly produce either red/black nuptial plumage or female-like brown plumage. Combining correlational analyses with a field-based testosterone implant experiment and quantitative polymerase chain reaction, we show that testosterone mediates expression of carotenoid-based plumage in part by regulating expression of CYP2J19, a ketolase gene associated with ketocarotenoid metabolism and pigmentation in birds. This is, to our knowledge, the first time that hormonal regulation of a specific genetic locus has been linked to carotenoid production in a natural context, revealing how endocrine mechanisms produce sexual signals that shape reproductive success.


Carotenoids , Feathers/physiology , Passeriformes , Testosterone , Animals , Male , Pigmentation
13.
Sci Rep ; 10(1): 1686, 2020 02 03.
Article En | MEDLINE | ID: mdl-32015412

Optimal foraging theory states that animals should maximize resource acquisition rates with respect to energy expenditure, which may involve alteration of strategies in response to changes in resource availability and energetic need. However, field-based studies of changes in foraging behavior at fine spatial and temporal scales are rare, particularly among species that feed on highly mobile prey across broad landscapes. To derive information on changes in foraging behavior of breeding brown pelicans (Pelecanus occidentalis) over time, we used GPS telemetry and distribution models of their dominant prey species to relate bird movements to changes in foraging habitat quality in the northern Gulf of Mexico. Over the course of each breeding season, pelican cohorts began by foraging in suboptimal habitats relative to the availability of high-quality patches, but exhibited a marked increase in foraging habitat quality over time that outpaced overall habitat improvement trends across the study site. These findings, which are consistent with adjustment of foraging patch use in response to increased energetic need, highlight the degree to which animal populations can optimize their foraging behaviors in the context of uncertain and dynamic resource availability, and provide an improved understanding of how landscape-level features can impact behavior.


Birds/physiology , Animals , Breeding/methods , Ecosystem , Feeding Behavior/physiology , Gulf of Mexico , Seasons
14.
Sci Rep ; 9(1): 12921, 2019 09 09.
Article En | MEDLINE | ID: mdl-31501471

Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.


Feathers/microbiology , Microbiota , Passeriformes , Pigmentation , Animals , Biodiversity , DNA Barcoding, Taxonomic , Female , Male , New Guinea
15.
Sci Total Environ ; 654: 593-603, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30447598

Many urban areas have elevated soil lead concentrations due to prior large-scale use of lead in products such as paint and automobile gasoline. This presents a potential problem for the growing numbers of wildlife living in urbanized areas as lead exposure is known to affect multiple physiological systems, including the nervous system, in vertebrate species. In humans and laboratory animals, low-level lead exposure is associated with neurological impairment, but less is known about how lead may affect the behavior of urban wildlife. We focused on the Northern Mockingbird Mimus polyglottos, a common, omnivorous North American songbird, to gain insights into how lead may affect the physiology and behavior of urban wildlife. We predicted that birds living in neighborhoods with high soil lead concentrations would (a) exhibit elevated lead concentrations in their blood and feathers, (b) exhibit lower body condition, (c) exhibit less diverse and consistent vocal repertoires, and (d) behave more aggressively during simulated conspecific territorial intrusions compared to birds living in neighborhoods with lower soil lead concentrations. Controlling for other habitat differences, we found that birds from areas of high soil lead had elevated lead concentrations in blood and feathers, but found no differences in body condition or vocal repertoires. However, birds from high lead areas responded more aggressively during simulated intrusions. These findings indicate that sub-lethal lead exposure may be common among wildlife living in urban areas, and that this exposure is associated with increased aggression. Better understanding of the extent of the relationship between lead exposure and aggression and the consequences this could have for survival and reproduction of wild animals are clear priorities for future work in this and other urban ecosystems.


Aggression/drug effects , Lead/metabolism , Soil Pollutants/metabolism , Songbirds/physiology , Vocalization, Animal/drug effects , Animals , Cognition/drug effects , Lead/analysis , Lead/blood , Male , New Orleans , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/blood , Territoriality
16.
PLoS One ; 13(10): e0206493, 2018.
Article En | MEDLINE | ID: mdl-30379912

Habitat loss has the potential to alter vertebrate host populations and their interactions with parasites. Theory predicts a decrease in parasite diversity due to the loss of hosts in such contexts. However, habitat loss could also increase parasite infections as a result of the arrival of new parasites or by decreasing host immune defenses. We investigated the effect of habitat loss and other habitat characteristics on avian haemosporidian infections in a community of birds within a fragmented landscape in northwest Ecuador. We estimated Plasmodium and Haemoproteus parasite infections in 504 individual birds belonging to 8 families and 18 species. We found differences in infection status among bird species, but no relationship between forest fragment characteristics and infection status was observed. We also found a temporal effect, with birds at the end of the five-month study (which ran from the end of the rainy season thru the dry season), being less infected by Plasmodium parasites than individuals sampled at the beginning. Moreover, we found a positive relationship between forest area and Culicoides abundance. Taken as a whole, these findings indicate little effect of fragment characteristics per se on infection, although additional sampling or higher infection rates would have offered more power to detect potential relationships.


Bird Diseases/epidemiology , Ecosystem , Forests , Haemosporida , Protozoan Infections, Animal/epidemiology , Animals , Ecuador
17.
Mol Ecol ; 27(15): 3159-3173, 2018 08.
Article En | MEDLINE | ID: mdl-29924880

Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long-standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal-dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long-distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long-distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine-scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine-scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (Nem ) was associated with higher effective number of pollen sources (Nep ), higher effective number of parents (Ne ) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (Nem ) at frugivore seed deposition sites in driving emergent patterns of fine-scale genetic diversity and structure.


Arecaceae/genetics , Gene Flow/genetics , Seedlings/genetics , Seeds/genetics , Arecaceae/physiology , Genetics, Population , Microsatellite Repeats/genetics , Pollen/genetics , Pollen/physiology , Seed Dispersal/genetics , Seed Dispersal/physiology , Seedlings/physiology , Seeds/physiology
18.
Mol Ecol ; 27(15): 3055-3069, 2018 08.
Article En | MEDLINE | ID: mdl-29900620

Habitat loss and fragmentation often reduce gene flow and genetic diversity in plants by disrupting the movement of pollen and seed. However, direct comparisons of the contributions of pollen vs. seed dispersal to genetic variation in fragmented landscapes are lacking. To address this knowledge gap, we partitioned the genetic diversity contributed by male gametes from pollen sources and female gametes from seed sources within established seedlings of the palm Oenocarpus bataua in forest fragments and continuous forest in northwest Ecuador. This approach allowed us to quantify the separate contributions of each of these two dispersal processes to genetic variation. Compared to continuous forest, fragments had stronger spatial genetic structure, especially among female gametes, and reduced effective population sizes. We found that within and among fragments, allelic diversity was lower and genetic structure higher for female gametes than for male gametes. Moreover, female gametic allelic diversity in fragments decreased with decreasing surrounding forest cover, while male gametic allelic diversity did not. These results indicate that limited seed dispersal within and among fragments restricts genetic diversity and strengthens genetic structure in this system. Although pollen movement may also be impacted by habitat loss and fragmentation, it nonetheless serves to promote gene flow and diversity within and among fragments. Pollen and seed dispersal play distinctive roles in determining patterns of genetic variation in fragmented landscapes, and maintaining the integrity of both dispersal processes will be critical to managing and conserving genetic variation in the face of continuing habitat loss and fragmentation in tropical landscapes.


Arecaceae/physiology , Ecosystem , Gene Flow/genetics , Alleles , Arecaceae/genetics , Genetics, Population , Seed Dispersal/genetics , Seed Dispersal/physiology
19.
New Phytol ; 218(4): 1658-1667, 2018 06.
Article En | MEDLINE | ID: mdl-29603256

Negative density dependence, where survival decreases as density increases, is a well-established driver of species diversity at the community level, but the degree to which a similar process might act on the density or frequency of genotypes within a single plant species to maintain genetic diversity has not been well studied in natural systems. In this study, we determined the maternal genotype of naturally dispersed seeds of the palm Oenocarpus bataua within a tropical forest in northwest Ecuador, tracked the recruitment of each seed, and assessed the role of individual-level genotypic rarity on survival. We demonstrate that negative frequency-dependent selection within this species conferred a survival advantage to rare maternal genotypes and promoted population-level genetic diversity. The strength of the observed rare genotype survival advantage was comparable to the effect of conspecific density regardless of genotype. These findings corroborate an earlier, experimental study and implicate negative frequency-dependent selection of genotypes as an important, but currently underappreciated, determinant of plant recruitment and within-species genetic diversity. Incorporating intraspecific genetic variation into studies and theory of forest dynamics may improve our ability to understand and manage forests, and the processes that maintain their diversity.


Arecaceae/genetics , Arecaceae/physiology , Genetic Variation , Tropical Climate , Computer Simulation , Ecuador , Genotype , Geography , Probability , Regression Analysis , Seed Dispersal/genetics
20.
Behav Processes ; 149: 27-34, 2018 Apr.
Article En | MEDLINE | ID: mdl-29369784

While the effects of nectar robbing on plants are relatively well-studied, its impacts from the perspective of the pollinators of robbed plants is not. Numerous studies do consider the impacts of robbing on pollinator visitation to robbed plants, but rarely do they focus on its scaled-up impacts on individual pollinator behavior. We used radio telemetry to track the spatial and behavioral responses of the territorial hummingbird Aglaeactis cupripennis to experimental nectar robbing over a period of several days. Simulated nectar robbing impacted foraging behavior by increasing territory area, distance flown, and reliance on novel food resources, especially small-bodied flying insects. We did not observe any impact on the amount of time individuals spent foraging, nor did we observe territory abandonment. These findings indicate that nectar robbing may impose a significant energetic cost on pollinators via increased flight distances and shifts towards potentially less profitable food resources, and demonstrate the importance of quantifying the indirect effects of nectar robbing on pollinators in addition to plants.


Appetitive Behavior/physiology , Birds/physiology , Plant Nectar , Theft , Animals , Female , Flowers , Male
...