Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896139

ABSTRACT

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Subject(s)
Fungal Proteins , Fungi , Plants , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Plants/microbiology , Fungi/genetics , Fungi/metabolism , Fungi/pathogenicity , Computer Simulation , Plant Diseases/microbiology , Prion Proteins/metabolism , Prion Proteins/genetics , Prion Proteins/chemistry , Prions/metabolism , Prions/genetics , Prions/chemistry , Virulence , Host-Pathogen Interactions
2.
PLoS One ; 19(2): e0298742, 2024.
Article in English | MEDLINE | ID: mdl-38412152

ABSTRACT

Subclinical infection of laboratory animals with one or more of several pathogens affects the results of experiments on animals. Monitoring the health of laboratory animals encompasses routine surveillance for pathogens, including several viruses. This study aimed to explore the development of an alternative assay to the existing ones for detecting infection of mice and rats with the parvoviruses minute virus of mice (MVM) and Kilham rat virus (KRV), respectively. Full-length VP2 and NS1 proteins of these parvoviruses, besides fragments containing multiple predicted epitopes stitched together, were studied for serological detection. The optimal dilution of full-length proteins and antigenic regions containing predicted epitopes for coating, test sera, and conjugate was determined using a checkerboard titration at each step. The assays were evaluated vis-à-vis commercially available ELISA kits. The results showed that an engineered fusion of fragments containing multiple predicted MVM VP2 and NS1 epitopes was better than either of the full-length proteins for detecting antibodies in 90% of the tested sera samples. For KRV ELISA, full-length VP2 was better compared to other individual recombinant protein fragments or combinations thereof for the detection of antibodies in sera. This report is the first description of an ELISA for KRV and an improved assay for MVM. Importantly, our assays could be exploited with small volumes of sera. The results also demonstrate the utility of immunoinformatics-driven polypeptide engineering in the development of diagnostic assays and the potential to develop better tests for monitoring the health status of laboratory animals.


Subject(s)
Minute Virus of Mice , Parvovirus , Mice , Animals , Rats , Immunoinformatics , Enzyme-Linked Immunosorbent Assay/methods , Animals, Laboratory , Antibodies, Viral , Peptides , Epitopes
3.
Plant Sci ; 338: 111922, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952767

ABSTRACT

One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.


Subject(s)
Antioxidants , Pyruvaldehyde , Reactive Oxygen Species/metabolism , Pyruvaldehyde/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Plants/metabolism , Oxidation-Reduction , Homeostasis
4.
Environ Microbiol ; 24(6): 2817-2836, 2022 06.
Article in English | MEDLINE | ID: mdl-34435423

ABSTRACT

Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.


Subject(s)
Arabidopsis , Pyruvaldehyde , Arabidopsis/genetics , Plants , Salt Stress , Salt Tolerance , Stress, Physiological/physiology
5.
Physiol Mol Biol Plants ; 27(11): 2579-2588, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34924712

ABSTRACT

Methylglyoxal (MG) is ubiquitously produced in all living organisms as a byproduct of glycolysis, higher levels of which are cytotoxic, leading to oxidative stress and apoptosis in the living systems. Though its generation is spontaneous but its detoxification involves glyoxalase pathway genes. Based on this understanding, the present study describes the possible role of MG as a novel non-antibiotic-based selection agent in rice. Further, by metabolizing MG, the glyoxalase pathway genes viz. glyoxalase I (GLYI) and glyoxalase II (GLYII), may serve as selection markers. Therefore, herein, transgenic rice harboring GLYI-GLYII genes (as selection markers) were developed and the effect of MG as a selection agent was assessed. The 3 mM MG concentration was observed as optimum for the selection of transformed calli, allowing efficient callus induction and proliferation along with high regeneration frequency (55 ± 2%) of the transgenic calli. Since the transformed calli exhibited constitutively higher activity of GLYI and GLYII enzymes compared to the wild type calli, the rise in MG levels was restricted even upon exogenous addition of MG during the selection process, resulting in efficient selection of the transformed calli. Therefore, MG-based selection method is a useful and efficient system for selection of transformed plants without significantly compromising the transformation efficiency. Further, this MG-based selection system is bio-safe and can pave way towards better public acceptance of transgenic plants.

6.
Physiol Mol Biol Plants ; 27(10): 2407-2420, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744374

ABSTRACT

Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.

7.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681693

ABSTRACT

Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Arylalkylamine N-Acetyltransferase/genetics , Cytochrome P-450 Enzyme System/genetics , Magnoliopsida/metabolism , Melatonin/biosynthesis , Serotonin/biosynthesis , Acetylserotonin O-Methyltransferase/metabolism , Arabidopsis/metabolism , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Magnoliopsida/physiology , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Sequence Analysis, DNA , Sorghum/metabolism
8.
Front Plant Sci ; 12: 707286, 2021.
Article in English | MEDLINE | ID: mdl-34381483

ABSTRACT

Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.

9.
Antioxidants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922426

ABSTRACT

Glyoxalase pathway is the primary route for metabolism of methylglyoxal (MG), a toxic ubiquitous metabolite that affects redox homeostasis. It neutralizes MG using Glyoxalase I and Glyoxalase II (GLYI and GLYII) enzymes in the presence of reduced glutathione. In addition, there also exists a shorter route for the MG detoxification in the form of Glyoxalase III (GLYIII) enzymes, which can convert MG into D-lactate in a single-step without involving glutathione. GLYIII proteins in different systems demonstrate diverse functional capacities and play a vital role in oxidative stress response. To gain insight into their evolutionary patterns, here we studied the evolution of GLYIII enzymes across prokaryotes and eukaryotes, with special emphasis on plants. GLYIII proteins are characterized by the presence of DJ-1_PfpI domains thereby, belonging to the DJ-1_PfpI protein superfamily. Our analysis delineated evolution of double DJ-1_PfpI domains in plant GLYIII. Based on sequence and structural characteristics, plant GLYIII enzymes could be categorized into three different clusters, which followed different evolutionary trajectories. Importantly, GLYIII proteins from monocots and dicots group separately in each cluster and the each of the two domains of these proteins also cluster differentially. Overall, our findings suggested that GLYIII proteins have undergone significant evolutionary changes in plants, which is likely to confer diversity and flexibility in their functions.

10.
Mitochondrial DNA B Resour ; 6(1): 274-277, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33553643

ABSTRACT

The Indian leafwing butterfly Kallima paralekta (Horsfield, 1829) (Nymphalidae) is an Asian forest-dwelling, leaf-mimic. Genome skimming by Illumina sequencing permitted assembly of a complete circular mitogenome of 15,200 bp from K. paralekta consisting of 79.5% AT nucleotides, 22 tRNAs, 13 protein-coding genes, two rRNAs and a control region in the typical butterfly gene order. Kallima paralekta COX1 features an atypical CGA start codon, while ATP6, COX1, COX2, ND4, ND4L, and ND5 exhibit incomplete stop codons completed by 3' A residues added to the mRNA. Phylogenetic reconstruction places K. paraleckta within the monophyletic genus Kallima, sister to Mallika in the subfamily Nymphalinae. These data support the monophyly of tribe Kallimini and contribute to the evolutionary systematics of the Nymphalidae.

11.
New Phytol ; 227(3): 714-721, 2020 08.
Article in English | MEDLINE | ID: mdl-32249440

ABSTRACT

Methylglyoxal (MG), a reactive carbonyl compound, is generated during metabolism in living systems. However, under stress, its levels increase rapidly leading to cellular toxicity. Although the generation of MG is spontaneous in a cell, its detoxification is essentially catalyzed by the glyoxalase enzymes. In plants, modulation of MG content via glyoxalases influences diverse physiological functions ranging from regulating growth and development to conferring stress tolerance. Interestingly, there has been a preferred expansion in the number of isoforms of these enzymes in plants, giving them high plasticity in their actions for accomplishing diverse roles. Future studies need to focus on unraveling the interplay of these multiple isoforms of glyoxalases possibly contributing towards the unique adaptability of plants to diverse environments.


Subject(s)
Lactoylglutathione Lyase , Plants , Pyruvaldehyde
12.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054702

ABSTRACT

Here, we report the 4.34-Mb draft genome assembly of Bacillus marisflavi CK-NBRI-03 (or P3), a Gram-positive bacterium, with an average G+C content of 48.66%. P3 was isolated from agricultural soil from the Badaun (midwestern plain zone) region of Uttar Pradesh, India.

13.
BMC Genomics ; 21(1): 145, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32041545

ABSTRACT

BACKGROUND: The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. RESULT: Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. CONCLUSION: This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.


Subject(s)
Lactate Dehydrogenases/genetics , Lactoylglutathione Lyase/genetics , Plant Proteins/genetics , Pyruvaldehyde/metabolism , Pyruvic Acid/metabolism , Sorghum/enzymology , Thiolester Hydrolases/genetics , Genome-Wide Association Study , Lactate Dehydrogenases/classification , Lactoylglutathione Lyase/classification , Phylogeny , Plant Proteins/classification , Sorghum/genetics , Stress, Physiological/genetics , Thiolester Hydrolases/classification
14.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31649082

ABSTRACT

Pseudomonas sp. strain CK-NBRI-02 is a potential plant growth-promoting Gram-negative rhizobacterium isolated from the rhizosphere of maize plants growing in fields in Srinagar, Jammu, and Kashmir, India. Here, we report a 5.25-Mb draft assembly of the genome sequence of Pseudomonas sp. strain CK-NBRI-02 with an average G+C content of 62.47%.

15.
J Maxillofac Oral Surg ; 18(4): 567-571, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31624438

ABSTRACT

AIM: The main aim of this study is to compare the gap arthroplasty with interpositional gap arthroplasty for the management of TMJ ankylosis. METHODOLOGY: A prospective randomized multicenter clinical trial had been performed, on 60 patients diagnosed with TMJ ankylosis from August 2005 to June 2015. Patients were equally divided into two groups: Group I patients were treated with gap arthroplasty, while patients in Group II were treated with interpositional arthroplasty. RESULTS: The mean age in Group I was 27.9 years and in Group II was 25.6 years. Trauma was the common etiological factor in both the groups. The mean postoperative mouth opening after 1 month, 6 months and 24 months was found to better in Group II. Open bite after 24 months was present in six patients in Group I and in one case in Group II. Permanent facial nerve palsy was present in one patient in both the groups. Frey's syndrome was present in one patient from Group I and none from Group II. Reoccurrence occurred in eight cases from Group I (26.6%) and none from Group II. CONCLUSION: This study concluded that interpositional arthroplasty is better than gap arthroplasty in terms of mouth opening and reankylosis.

16.
Rice (N Y) ; 12(1): 3, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30701331

ABSTRACT

BACKGROUND: To delineate the adaptive mechanisms operative under salinity stress, it is essential to study plant responses at the very early stages of stress which are very crucial for governing plant survival and adaptation. We believe that it is the initial perception and response phase which sets the foundation for stress adaptation in rice seedlings where plants can be considered to be in a state of osmotic shock and ion buildup. RESULTS: An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze the pre-existing differences as well as the very early salt shock responsive changes in the proteome of seedlings of contrasting rice genotypes, viz salt-sensitive IR64 and salt-tolerant Pokkali. In response to a quick salt shock, shoots of IR64 exhibited hyperaccumulation of Na+, whereas in Pokkali, these ions accumulated more in roots. Interestingly, we could find 86 proteins to be differentially expressed in shoots of Pokkali seedlings under non-stress conditions whereas under stress, 63 proteins were differentially expressed in Pokkali shoots in comparison to IR64. However, only, 40 proteins under non-stress and eight proteins under stress were differentially expressed in Pokkali roots. A higher abundance of proteins involved in photosynthesis (such as, oxygen evolving enhancer proteins OEE1 & OEE3, PsbP) and stress tolerance (such as, ascorbate peroxidase, superoxide dismutase, peptidyl-prolyl cis-trans isomerases and glyoxalase II), was observed in shoots of Pokkali in comparison to IR64. In response to salinity, selected proteins such as, ribulose bisphosphate carboxylase/oxygenase activase, remained elevated in Pokkali shoots. Glutamate dehydrogenase - an enzyme which serves as an important link between Krebs cycle and metabolism of amino acids was found to be highly induced in Pokkali in response to stress. Similarly, other enzymes such as peroxidases and triose phosphate isomerase (TPI) were also altered in roots in response to stress. CONCLUSION: We conclude that Pokkali rice seedlings are primed to face stress conditions where the proteins otherwise induced under stress in IR64, are naturally expressed in high abundance. Through specific alterations in its proteome, this proactive stress machinery contributes towards the observed salinity tolerance in this wild rice germplasm.

17.
Curr Genomics ; 19(1): 50-59, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29491732

ABSTRACT

Cystathionine ß-synthase (CBS) domains have been identified in a wide range of proteins of unrelated functions such as, metabolic enzymes, kinases and channels, and usually occur as tandem re-peats, often in combination with other domains. In plants, CBS Domain-Containing Proteins (CDCPs) form a multi-gene family and only a few are so far been reported to have a role in development via regu-lation of thioredoxin system as well as in abiotic and biotic stress response. However, the function of majority of CDCPs still remains to be elucidated in plants. Here, we report the cloning, characterization and functional validation of a CBS domain containing protein, OsCBSCBSPB4 from rice, which pos-sesses two CBS domains and one PB1 domain. We show that OsCBSCBSPB4 encodes a nucleo-cytoplasmic protein whose expression is induced in response to various abiotic stress conditions in salt-sensitive IR64 and salt-tolerant Pokkali rice cultivars. Further, heterologous expression of OsCBSCB-SPB4 in E. coli and tobacco confers marked tolerance against various abiotic stresses. Transgenic tobac-co seedlings over-expressing OsCBSCBSPB4 were found to exhibit better growth in terms of delayed leaf senescence, profuse root growth and increased biomass in contrast to the wild-type seedlings when subjected to salinity, dehydration, oxidative and extreme temperature treatments. Yeast-two hybrid stud-ies revealed that OsCBSCBSPB4 interacts with various proteins. Of these, some are known to be in-volved in abiotic stress tolerance. Our results suggest that OsCBSCBSPB4 is involved in abiotic stress response and is a potential candidate for raising multiple abiotic stress tolerant plants.

18.
PLoS One ; 13(1): e0191315, 2018.
Article in English | MEDLINE | ID: mdl-29360877

ABSTRACT

The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Biotin/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Peptide Library , Serologic Tests/methods , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biotinylation , Carbon-Nitrogen Ligases/metabolism , Cloning, Molecular , Cytosol/metabolism , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Genetic Vectors/genetics , Indicators and Reagents/metabolism , Mycobacterium tuberculosis/genetics , Repressor Proteins/metabolism
19.
Plant Cell Environ ; 41(5): 947-969, 2018 05.
Article in English | MEDLINE | ID: mdl-28337760

ABSTRACT

High salinity is one of the major problems in crop productivity, affecting seed germination as well as yield. In order to enhance tolerance of crops towards salinity, it is essential to understand the underlying physiological and molecular mechanisms. In this endeavor, study of contrasting genotypes of the same species differing in their response towards salinity stress can be very useful. In the present study, we have investigated temporal differences in morphological, physiological and proteome profiles of two contrasting genotypes of rice to understand the basis of salt tolerance. When compared to IR64 rice, Pokkali, the salt-tolerant wild genotype, has enhanced capacity to cope with stress, better growth rate and possesses efficient antioxidant system, as well as better photosynthetic machinery. Our proteome studies revealed a higher and an early abundance of proteins involved in stress tolerance and photosynthesis in Pokkali in comparison with IR64, which, in contrast, showed greater changes in metabolic machinery even during early duration of stress. Our findings suggest important differences in physicochemical and proteome profiles of the two genotypes, which may be the basis of observed stress tolerance in the salt-tolerant Pokkali.


Subject(s)
Oryza/physiology , Proteome , Salt Tolerance , Antioxidants/metabolism , Crops, Agricultural , Environment , Oryza/genetics , Oryza/growth & development , Photosynthesis/physiology , Proteomics , Salinity , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology
20.
Int J Mol Sci ; 18(4)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28358304

ABSTRACT

The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Lactoylglutathione Lyase/metabolism , Plant Proteins/metabolism , Plants/enzymology , Thiolester Hydrolases/metabolism , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , Lactoylglutathione Lyase/chemistry , Lactoylglutathione Lyase/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/genetics , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...