Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
iScience ; 27(7): 110161, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974974

ABSTRACT

Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.

2.
Sci Rep ; 14(1): 10636, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724644

ABSTRACT

Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.


Subject(s)
CRISPR-Cas Systems , Forkhead Transcription Factors , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Rats , RNA, Guide, CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Thymus Gland/metabolism , Models, Animal , Blastocyst/metabolism
3.
Immunity ; 57(4): 649-673, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599164

ABSTRACT

Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules , Toll-Like Receptors , Toll-Like Receptors/metabolism , Immunity, Innate/physiology , Signal Transduction , Gene Expression Regulation
4.
Int Immunol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646837

ABSTRACT

Interleukin-6 (IL-6) plays a crucial role in various cellular functions, including the innate and adaptive immune responses. Dysregulated expression of IL-6 is associated with hyperinflammation and chronic inflammatory diseases. In this study, we aimed to identify the enhancer regions responsible for robust Il6 mRNA expression in murine macrophages. Through comprehensive genome-wide ChIP-seq and ATAC-seq analyses, we identified two distinct clusters, termed E1 and E2 regions, located at -144 kb to -163 kb relative to the Il6 transcription start site in lipopolysaccharide (LPS)-activated murine macrophages. These clusters exhibited an accumulation of histone modification marks (H3K27ac and H3K4me1), as well as open chromatin, and were found to contain binding sites for the transcription factors PU.1, NF-κB, C/EBPß, and JunB. Upregulation of non-coding RNA (ncRNA) transcripts from the E1 and E2 regions was observed upon LPS stimulation, and repression of these ncRNAs resulted in abrogation of Il6 expression. Additionally, deletion of either E1 or E2 regions significantly impaired Il6 expression, while CRISPR/dCas9 activation-mediated recruitment of the co-activator p300 to the E1 and E2 regions facilitated Il6 expression. Collectively, our findings suggest that the E1 and E2 regions serve as putative enhancers for Il6 expression.

5.
EMBO J ; 42(20): e112573, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37661814

ABSTRACT

Mitochondrial DNA (mtDNA) leakage into the cytoplasm can occur when cells are exposed to noxious stimuli. Specific sensors recognize cytoplasmic mtDNA to promote cytokine production. Cytoplasmic mtDNA can also be secreted extracellularly, leading to sterile inflammation. However, the mode of secretion of mtDNA out of cells upon noxious stimuli and its relevance to human disease remain unclear. Here, we show that pyroptotic cells secrete mtDNA encapsulated within exosomes. Activation of caspase-1 leads to mtDNA leakage from the mitochondria into the cytoplasm via gasdermin-D. Caspase-1 also induces intraluminal membrane vesicle formation, allowing for cellular mtDNA to be taken up and secreted as exosomes. Encapsulation of mtDNA within exosomes promotes a strong inflammatory response that is ameliorated upon exosome biosynthesis inhibition in vivo. We further show that monocytes derived from patients with Behçet's syndrome (BS), a chronic systemic inflammatory disorder, show enhanced caspase-1 activation, leading to exosome-mediated mtDNA secretion and similar inflammation pathology as seen in BS patients. Collectively, our findings support that mtDNA-containing exosomes promote inflammation, providing new insights into the propagation and exacerbation of inflammation in human inflammatory diseases.


Subject(s)
Behcet Syndrome , Exosomes , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Behcet Syndrome/genetics , Behcet Syndrome/metabolism , Exosomes/genetics , Mitochondria/genetics , Inflammation/metabolism , Caspases/metabolism
6.
iScience ; 26(1): 105793, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36619979

ABSTRACT

Peroxiredoxin (Prx), an antioxidant enzyme family, has been identified as immune modulating damage-associated molecular patterns (DAMPs) in mammals but not in shrimp. Acute non-lethal heat shock (NLHS) that enhances shrimp Penaeus vannamei resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND). Among the five P. vannamei Prxs (LvPrx) isoforms, LvPrx4, the most abundant in unchallenged shrimp hemocytes that was upregulated in hemocytes following NLHS treatment, is of great interest. The escalation of the LvPrx4 monomer in hemolymph of NLHS treated shrimp indicates that it probably acts as DAMP. This study revealed that pre-challenge with rLvPrx4 could prolong VPAHPND-infected shrimp survival, increase prophenoloxidase (proPO) activity and promote Toll pathway-related genes expression mediated by Toll-like receptor (TLR) 1 and 2. The presented findings elucidated the molecular mechanism of LvPrx4 monomer as DAMP in NLHS-induced VPAHPND resistance by inducing the TLR1/2 signaling pathway and the proPO activating system.

7.
Int Rev Immunol ; 42(4): 274-286, 2023.
Article in English | MEDLINE | ID: mdl-35499950

ABSTRACT

Inflammation plays indispensable roles in building the immune responses such as acquired immunity against harmful pathogens. Furthermore, it is essential for maintaining biological homeostasis in ever-changing conditions. Pattern-recognition receptors (PRRs) reside in cell membranes, endosomes or cytoplasm, and function as triggers for inflammatory responses. Binding of pathogen- or self-derived components, such as DNA, to PRRs activates downstream signaling cascades, resulting in the production of a series of pro-inflammatory cytokines and type I interferons (IFNs). While these series of responses are essential for host defense, the unexpected release of DNA from the nucleus or mitochondria of host cells can lead to autoimmune and autoinflammatory diseases. In this review, we focus on DNA-sensing mechanisms via PRRs and the disorders and extraordinary conditions caused by self-derived DNA.


Subject(s)
Immunity, Innate , Receptors, Pattern Recognition , Humans , Receptors, Pattern Recognition/metabolism , Cytokines/metabolism , Adaptive Immunity , DNA/genetics
8.
Cell Rep ; 41(11): 111828, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516765

ABSTRACT

Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Mice , Animals , Macrophages, Alveolar , CD8-Positive T-Lymphocytes , Immunologic Memory , Cross-Priming , Lung
9.
Front Cell Infect Microbiol ; 12: 910654, 2022.
Article in English | MEDLINE | ID: mdl-35734577

ABSTRACT

Pattern recognition receptors (PRRs) play critical roles in recognizing pathogen-derived nucleic acids and inducing innate immune responses, such as inflammation and type I interferon production. PRRs that recognize nucleic acids include members of endosomal Toll-like receptors, cytosolic retinoic acid inducible gene I-like receptors, cyclic GMP-AMP synthase, absent in melanoma 2-like receptors, and nucleotide binding oligomerization domain-like receptors. Aberrant recognition of self-derived nucleic acids by these PRRs or unexpected activation of downstream signaling pathways results in the constitutive production of type I interferons and inflammatory cytokines, which lead to the development of autoimmune or autoinflammatory diseases. In this review, we focus on the nucleic acid-sensing machinery and its pathophysiological roles in various inflammatory diseases.


Subject(s)
Interferon Type I , Nucleic Acids , Immunity, Innate , Interferon Type I/metabolism , Nucleic Acids/metabolism , Receptors, Pattern Recognition , Toll-Like Receptors
10.
J Immunol ; 209(1): 171-179, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35725272

ABSTRACT

Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.


Subject(s)
Neoplasms , Topotecan , Animals , Mice , Neoplasms/drug therapy , Ribosomal Proteins , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Topotecan/therapeutic use
11.
Front Immunol ; 13: 860915, 2022.
Article in English | MEDLINE | ID: mdl-35615351

ABSTRACT

The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.


Subject(s)
Antigen Presentation , Endothelial Cells , Cells, Cultured , Dendritic Cells , Lung
12.
Genes Cells ; 27(7): 482-492, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35467779

ABSTRACT

Lipopolysaccharide on gram negative bacteria can be detected by Toll-like receptor 4 (TLR4) to elicit a series of innate immune responses, leading to inflammation to eliminate the targeted pathogen. However, dysregulation in the responses results in excessive inflammation. The 1'-acetoxychavicol acetate (ACA) is a bioactive compound originated from Alpinia species known to have anti-inflammatory and apoptosis-inducing properties. Here, we found that ACA inhibits lipopolysaccharide-induced expression and production of proinflammatory cytokines such as interleukin 6 and TNFα by macrophages. ACA suppresses the activation of NF-κB and MAP kinases in TLR4 signaling. Moreover, ACA also inhibits TLR4-mediated induction of type I interferon by suppressing IRF3 activation. In lipopolysaccharide-challenged mice, ACA treatment successfully increased the survival of mice and alleviated inflammation in the lung. Thus, ACA is a potential anti-inflammatory agent to regulate excessive inflammation.


Subject(s)
Benzyl Alcohols , Inflammation , Toll-Like Receptor 4 , Animals , Benzyl Alcohols/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism
13.
iScience ; 25(4): 104118, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402874

ABSTRACT

The innate immune system is an immediate defense against infectious pathogens by the production of inflammatory cytokines and other mediators. Deficiencies of epigenetic regulatory enzymes, such as Tet1 and Dnmt1, cause dysregulation of cytokine expression. However, it is unclear if DNA methylation at a single CpG dinucleotide in a specific gene locus can regulate gene expression. In this study, we demonstrated that CpG+286 and CpG+348 in exon 2 of the Il6 gene are similar in various primary mouse cells. In lipopolysaccharide-stimulated condition, hypomethylated CpG+286 promoted Il6 expression whereas deletion of CpG+348 led to a reduction in Il6 expression associated with enhanced CTCF binding to the Il6 locus. Moreover, hypomethylation at CpG+286 in alveolar macrophages from aged mice led to higher Il6 expression in response to LPS compared with young mice. Thus, DNA methylation at specific CpG dinucleotides plays an important regulatory role in Il6 expression.

14.
Front Cell Infect Microbiol ; 11: 745016, 2021.
Article in English | MEDLINE | ID: mdl-34692565

ABSTRACT

Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.


Subject(s)
Adjuvants, Immunologic , Receptors, Pattern Recognition , Adaptive Immunity , Immunity, Innate , Reproducibility of Results , Toll-Like Receptors
15.
Comput Biol Med ; 137: 104792, 2021 10.
Article in English | MEDLINE | ID: mdl-34478921

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the global coronavirus disease 2019 (COVID-19) pandemic. Despite several single-cell RNA sequencing (RNA-seq) studies, conclusions cannot be reached owing to the small number of available samples and the differences in technology and tissue types used in the studies. To better understand the cellular landscape and disease severity in COVID-19, we performed a meta-analysis of publicly available single-cell RNA-seq data from peripheral blood and lung samples of COVID-19 patients with varying degrees of severity. Patients with severe disease showed increased numbers of M1 macrophages in lung tissue, while the number of M2 macrophages was depleted. Cellular profiling of the peripheral blood showed a marked increase of CD14+, CD16+ monocytes and a concomitant depletion of overall B cells and CD4+, CD8+ T cells in severe patients when compared with moderate patients. Our analysis indicates the presence of faulty innate-to-adaptive switching, marked by a prolonged innate immune response and a dysregulated adaptive immune response in severe COVID-19 patients. Furthermore, we identified cell types with a transcriptome signature that can be used as a prognostic biomarker for disease state prediction and the effective therapeutic management of COVID-19 patients.


Subject(s)
COVID-19 , RNA , CD8-Positive T-Lymphocytes , Humans , SARS-CoV-2 , Sequence Analysis, RNA
16.
Sci Rep ; 11(1): 16814, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413339

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has emerged as a pandemic. Paucity of information concerning the virus and therapeutic interventions have made SARS-CoV-2 infection a genuine threat to global public health. Therefore, there is a growing need for understanding the molecular mechanism of SARS-CoV-2 infection at cellular level. To address this, we undertook a systems biology approach by analyzing publicly available RNA-seq datasets of SARS-CoV-2 infection of different cells and compared with other lung pathogenic infections. Our study identified several key genes and pathways uniquely associated with SARS-CoV-2 infection. Genes such as interleukin (IL)-6, CXCL8, CCL20, CXCL1 and CXCL3 were upregulated, which in particular regulate the cytokine storm and IL-17 signaling pathway. Of note, SARS-CoV-2 infection strongly activated IL-17 signaling pathway compared with other respiratory viruses. Additionally, this transcriptomic signature was also analyzed to predict potential drug repurposing and small molecule inhibitors. In conclusion, our comprehensive data analysis identifies key molecular pathways to reveal underlying pathological etiology and potential therapeutic targets in SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Interleukin-17/genetics , SARS-CoV-2/physiology , Systems Biology/methods , Antiviral Agents/therapeutic use , Chemokine CCL20/genetics , Chemokine CXCL1/genetics , Chemokines, CXC/genetics , Drug Repositioning , Humans , Interleukin-17/metabolism , Interleukin-6/genetics , Interleukin-8/genetics , Organ Specificity , Signal Transduction , Transcriptome , COVID-19 Drug Treatment
17.
Int Immunol ; 33(7): 373-386, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33830232

ABSTRACT

The nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing (NLRP) 3 inflammasome is a multiprotein complex that triggers Caspase-1-mediated IL-1ß production and pyroptosis, and its dysregulation is associated with the pathogenesis of inflammatory diseases. 1'-Acetoxychavicol acetate (ACA) is a natural compound in the rhizome of tropical ginger Alpinia species with anti-microbial, anti-allergic and anti-cancer properties. In this study, we found that ACA suppressed NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and human THP-1 monocytes. ACA inhibited Caspase-1 activation and IL-1ß production by NLRP3 agonists such as nigericin, monosodium urate (MSU) crystals, and ATP. Moreover, it suppressed oligomerization of the adapter molecule, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1-mediated cleavage of pyroptosis executor Gasdermin D. Mechanistically, ACA inhibited generation of mitochondrial reactive oxygen species (ROS) and prevented release of oxidized mitochondrial DNA, which trigger NLRP3 inflammasome activation. ACA also prevented NLRP3 inflammasome activation in vivo, as evidenced in the MSU crystal-induced peritonitis and dextran sodium sulfate-induced colitis mouse models accompanied by decreased Caspase-1 activation. Thus, ACA is a potent inhibitor of the NLRP3 inflammasome for prevention of NLRP3-associated inflammatory diseases.


Subject(s)
Benzyl Alcohols/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Animals , Caspase 1/metabolism , Cells, Cultured , Disease Models, Animal , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Peritonitis/drug therapy , Peritonitis/metabolism , Phagocytosis/drug effects , Pyroptosis/drug effects , THP-1 Cells/drug effects , THP-1 Cells/metabolism
18.
Front Immunol ; 12: 818267, 2021.
Article in English | MEDLINE | ID: mdl-35082798

ABSTRACT

Interferon regulatory factors (IRFs) are transcription factors found in both vertebrates and invertebrates that were recently identified and found to play an important role in antiviral immunity in black tiger shrimp Penaeus monodon. In this study, we investigated the mechanism by which P. monodon IRF (PmIRF) regulates the immune-related genes downstream of the cytosolic DNA sensing pathway. Depletion of PmIRF by double-stranded RNA-mediated gene silencing significantly reduced the mRNA expression levels of the IFN-like factors PmVago1, PmVago4, and PmVago5 and antilipopolysaccharide factor 6 (ALFPm6) in shrimp. In human embryonic kidney (HEK293T) cells transfected with PmIRF or co-transfected with DEAD-box polypeptide (PmDDX41) and simulator of IFN genes (PmSTING) expression plasmids, the promoter activity of IFN-ß, nuclear factor (NF-κB), and ALFPm6 was synergistically enhanced following stimulation with the nucleic acid mimics deoxyadenylic-deoxythymidylic acid sodium salt [poly(dA:dT)] and high molecular weight (HMW) polyinosinic-polycytidylic acid [poly(I:C)]. Both nucleic acid mimics also significantly induced PmSTING, PmIRF, and ALFPm6 gene expression. Co-immunoprecipitation experiments showed that PmIRF interacted with PmSTING in cells stimulated with poly(dA:dT). PmSTING, PmIRF, and PmDDX41 were localized in the cytoplasm of unstimulated HEK293T cells and PmIRF and PmDDX41 were translocated to the nucleus upon stimulation with the nucleic acid mimics while PmSTING remained in the cytoplasm. These results indicate that PmIRF transduces the pathogen signal via the PmDDX41-PmSTING DNA sensing pathway to induce downstream production of interferon-like molecules and antimicrobial peptides.


Subject(s)
Antimicrobial Peptides/genetics , DNA/immunology , Gene Expression Regulation , Interferon Regulatory Factors/metabolism , Interferons/genetics , Membrane Proteins/metabolism , Penaeidae/physiology , Animals , Antimicrobial Peptides/metabolism , Cell Line , Cells, Cultured , Gene Silencing , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/pharmacology , Interferons/metabolism , Signal Transduction
19.
Biochem Biophys Res Commun ; 530(4): 699-705, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32768188

ABSTRACT

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family and plays critical roles in facilitating type-2 immune responses. IL-33 is localized in the nucleus and released to the extracellular milieu during cell death, although the precise mechanisms underlying IL-33 mobilization remain unclear. Here, we found that nigericin, a toxin derived from Streptomyces hygroscopicus, promoted IL-33 translocation from the nucleus to the cytosol before extracellular release. This translocation was inhibited by chelating Ca2+ with EGTA or membrane protection by glycine treatment. Ca2+ ionophore A23187 stimulation caused IL-33 translocation to the cytoplasm but was not sufficient for extracellular release. However, IL-33 release was induced by detergent treatment, which indicates that membrane rupture is required for IL-33 release. The pore-forming pyroptosis executor gasdermin D was cleaved following nigericin stimulation, and overexpression of the cleaved gasdermin D-N-terminal fragment that forms the membrane pore sufficiently induced IL-33 release, which was blocked by EGTA and glycine. Together, these findings suggest that Ca2+-dependent signals and gasdermin D pore formation are required for robust IL-33 production.


Subject(s)
Calcium/immunology , Interleukin-33/immunology , Nigericin/immunology , Streptomyces/immunology , Animals , Cells, Cultured , HEK293 Cells , Humans , Interleukin-33/analysis , Intracellular Signaling Peptides and Proteins/immunology , Mice, Inbred C57BL , Phosphate-Binding Proteins/immunology
20.
Front Immunol ; 11: 625833, 2020.
Article in English | MEDLINE | ID: mdl-33633744

ABSTRACT

Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.


Subject(s)
DNA/immunology , Immunity, Innate , Interferon Type I/immunology , Receptors, Pattern Recognition/immunology , Signal Transduction/immunology , Animals , Humans , Inflammation/immunology , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...