Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Vet Res ; 19(1): 58, 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36871053

ABSTRACT

BACKGROUND: Feline leukemia virus (FeLV) is a retrovirus with global impact on the health of domestic cats and is usually examined by serology. In our daily clinical practice, we noticed that cats infected with FeLV often possess wavy whiskers (sinus hairs on the face). To investigate the relationship between wavy whiskers (WW) and FeLV infection, the association between the presence or absence of wavy changes in whiskers and serological FeLV infection was examined in a total of 358 cats including 56 cats possessing WW, using the chi-square test. The results of blood tests from 223 cases were subjected to multivariate analysis (logistic analysis). Isolated whiskers were observed under light microscopy, and upper lip tissues (proboscis) were subjected to histopathological and immunohistochemical analyses. RESULTS: The prevalence of WW was significantly correlated with FeLV antigen positivity in the blood. Of 56 cases with WW, 50 (89.3%) were serologically positive for FeLV. The significant association between WW and serological FeLV positivity was also confirmed by multivariate analysis. In WW, narrowing, degeneration, and tearing of the hair medulla were observed. Mild infiltration of mononuclear cells in the tissues, but no degeneration or necrosis, was found. By immunohistochemistry, FeLV antigens (p27, gp70 and p15E) were observed in various epithelial cells including the sinus hair follicular epithelium of the whisker. CONCLUSIONS: The data suggest that the wavy changes in whiskers, a unique and distinctive external sign on a cat's face, were associated with FeLV infection.


Subject(s)
Leukemia Virus, Feline , Vibrissae , Cats , Animals , Epithelial Cells , Epithelium , Hair
2.
Anat Histol Embryol ; 52(3): 363-372, 2023 May.
Article in English | MEDLINE | ID: mdl-36471656

ABSTRACT

In this study, the pattern of myosin heavy chain (MHC) isoforms expression in skeletal muscles of the trunk, forelimb and hindlimb in Polar Bear (PB) Ursus maritimus; American Black Bear (AmBB), Ursus americanus and Asian Black Bear (AsBB), Ursus thibetanus was analysed by immunohistochemistry and SDS-PAGE. Results showed that slow (MHC-I) and fast (MHC-II) isoforms exist in muscles of bears. Type II fibres were classified further into Type IIa and IIx in PB but not in AsBB and AmBB. The distribution of Type I and Type II fibres in the trunk, forelimb and hindlimb varied based on muscle type and animal species. The proportions of Type I fibres formed approximately one-third of muscle composition in PB (trunk, 32.0%; forelimb, 34.7%; hindlimb, 34.5%) and a half in both AsBB and AmBB whereas Type IIa and IIx formed approximately two-third in PB (trunk, 68.0%; forelimb, 65.3%; hindlimb, 65.5%) and a half of Type II in both AmBB and AsBB. PB is a good swimmer, lives in Arctic Ocean on slippery ice catching aquatic mammals such as seals and is larger in size compared to the medium sized AmBB (living in forest) and AsBB (arboreal). The results suggest that in bears, there is greater diversity in MHC isoforms II, being expressed in selected fast contracting skeletal muscles in response to variety of environments, weight bearing and locomotion.


Subject(s)
Myosin Heavy Chains , Ursidae , Animals , Myosin Heavy Chains/analysis , Myosin Heavy Chains/metabolism , Ursidae/metabolism , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Protein Isoforms/analysis , Protein Isoforms/metabolism
3.
JFMS Open Rep ; 3(1): 2055116917708060, 2017.
Article in English | MEDLINE | ID: mdl-28546867

ABSTRACT

CASE SUMMARY: Two castrated male cats, aged 8 months old (case 1) and 10 months old (case 2), showed a history of progressive paraparesis, an over-reaching pelvic limb gait, urinary incontinence and a palpable dermoid fistula. In case 1, the fistula was connected to the dural sac on the conus medullaris, and the tethered spinal cord was retracted caudally. In case 2, the tubular structure was connected to the dural sac on the thoracic spinal cord, and the tethered spinal cord was retracted dorsally. Tethered cord syndrome secondary to spina bifida aperta was suspected in both cats. Excision of the fistula and release of the tethered spinal cord was performed. A histopathological examination confirmed the diagnosis of a meningomyelocele in case 1 and a meningocele in case 2. Paraparesis improved postoperatively in both cats. However, urinary incontinence in case 1 remained partially unresolved. RELEVANCE AND NOVEL INFORMATION: This is the first report to describe the imaging characteristics, surgical treatments and outcomes of two different types of tethered cord syndrome with spina bifida aperta in cats. Tethered cord syndrome with spina bifida aperta needs to be included in the differential diagnosis of slowly progressive paraparesis in younger cats with or without vesicorectal failure and a palpable dermoid fistula.

SELECTION OF CITATIONS
SEARCH DETAIL