Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Signal ; 17(827): eade0580, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470957

ABSTRACT

Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Endothelial Cells , Neoplasms/metabolism , Cell Membrane , Cell Line , Fibroblasts/metabolism , Tumor Microenvironment , Cell Line, Tumor
2.
Microb Cell Fact ; 23(1): 72, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429691

ABSTRACT

BACKGROUND: Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS: To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS: We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.


Subject(s)
Escherichia coli , Polyisoprenyl Phosphates , Escherichia coli/genetics , Polysaccharides , Biotechnology
3.
Curr Opin Biotechnol ; 84: 103011, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864905

ABSTRACT

Proline is a nonessential amino acid, and its metabolism has been implicated in numerous malignancies. Together with a direct role in regulating cancer cells' proliferation and survival, proline metabolism plays active roles in shaping the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) display high rates of proline biosynthesis to support the production of collagen for the extracellular matrix (ECM). Indeed, impaired proline metabolism in CAFs results in reduced collagen deposition and compromises the growth and metastatic spread of cancer. Moreover, the rate of proline metabolism regulates intracellular reactive oxygen species (ROS) levels, which influence the production and release of cytokines from cancer cells, contributing toward an immune-permissive TME. Hence, targeting proline metabolism is a promising anticancer strategy that could improve patients' outcome and response to immunotherapy.


Subject(s)
Immune Evasion , Neoplasms , Humans , Neoplasms/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Proline/metabolism , Tumor Microenvironment/physiology
4.
Microb Cell Fact ; 22(1): 159, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596672

ABSTRACT

Conjugate vaccines produced either by chemical or biologically conjugation have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccine assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel biotechnological platform that overcomes the limitations of the current conjugate vaccine design method(s). As a model, we focused our design on a leading bioconjugation method using N-oligosaccharyltransferase (OTase), PglB. The installation of MAGIC led to at least twofold increase in glycoconjugate yield via MAGIC when compared to conventional N-OTase based bioconjugation method(s). Then, we improved MAGIC to (a) allow rapid installation of glycoengineering component(s), (b) omit the usage of antibiotics, (c) reduce the dependence on protein induction agents. Furthermore, we show the modularity of the MAGIC platform in performing glycoengineering in bacterial species that are less genetically tractable than the commonly used Escherichia coli. The MAGIC system promises a rapid, robust and versatile method to develop vaccines against serious bacterial pathogens. We anticipate the utility of the MAGIC platform could enhance vaccines production due to its compatibility with virtually any bioconjugation method, thus expanding vaccine biopreparedness toolbox.


Subject(s)
Anti-Bacterial Agents , Biotechnology , Vaccines, Conjugate , Escherichia coli/genetics , Vaccine Development
5.
Mol Oncol ; 17(4): 541-544, 2023 04.
Article in English | MEDLINE | ID: mdl-36807529

ABSTRACT

Bicarbonate transport is a pre-existing mechanism of pH regulation in pancreatic ductal cells. In a recent study, Cappellesso et al. demonstrated that pancreatic ductal adenocarcinoma metabolic rewiring creates an acidic environment, enhanced by bicarbonate import into cancer cells via SLC4A4. This acidity favours protumourigenic immunosuppression. Targeting SLC4A4 neutralises environmental pH and restores antitumour immunity, sensitising tumours to immune checkpoint blockade.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Bicarbonates , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Immune Tolerance , Tumor Microenvironment , Immunotherapy
6.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223308

ABSTRACT

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

8.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
9.
Microb Cell Fact ; 21(1): 66, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449016

ABSTRACT

BACKGROUND: Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS: In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS: Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.


Subject(s)
Escherichia coli , Glycoconjugates , Bacterial Vaccines/genetics , Escherichia coli/metabolism , Glycoconjugates/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Racemases and Epimerases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Vaccines, Conjugate
11.
Methods Mol Biol ; 2414: 281-300, 2022.
Article in English | MEDLINE | ID: mdl-34784042

ABSTRACT

The production of conjugate vaccines within an E. coli (Escherichia coli) host provides an inexhaustible supply without the need for culture of pathogenic organisms. The machinery for expression of glycan and acceptor protein, as well as the coupling enzyme, are all housed within the E. coli chassis, meaning that there are no additional steps required for individual purification and chemical conjugation of components. In addition, there are far fewer purification steps necessary to obtain a purified glycoconjugate for use in vaccine testing. Here we describe production and purification of a HIS-tagged Campylobacter jejuni AcrA protein conjugated to Streptococcus pneumoniae serotype 4 capsule.


Subject(s)
Vaccines, Conjugate , Campylobacter jejuni , Escherichia coli/genetics , Glycoconjugates , Polysaccharides
12.
Front Oncol ; 11: 719922, 2021.
Article in English | MEDLINE | ID: mdl-34513697

ABSTRACT

Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as 'wounds that do not heal'. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.

13.
Cancer Cell ; 39(9): 1175-1177, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34520729

ABSTRACT

Fibroblasts are a major non-neoplastic component of solid tumors, yet it is unclear whether they promote or oppose cancer. In this issue of Cancer Cell, Hutton et al. report two distinct fibroblast subpopulations that are defined by a single marker, one subpopulation that is tumor permissive and the other that is tumor suppressive and supports anti-tumor immunity.


Subject(s)
Pancreatic Neoplasms , Tumor Microenvironment , Fibroblasts , Humans , Pancreatic Neoplasms/genetics
14.
Microb Cell Fact ; 20(1): 104, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34030723

ABSTRACT

Protein Glycan Coupling Technology (PGCT) uses purposely modified bacterial cells to produce recombinant glycoconjugate vaccines. This vaccine platform holds great potential in this context, namely due to its modular nature, the simplified production process in comparison to traditional chemical conjugation methods, and its amenability to scaled-up operations. As a result, a considerable reduction in production time and cost is expected, making PGCT-made vaccines a suitable vaccine technology for low-middle income countries, where vaccine coverage remains predominantly low and inconsistent. This work aims to develop an integrated whole-process automated platform for the screening of PGCT-made glycoconjugate vaccine candidates. The successful translation of a bench scale process for glycoconjugate production to a microscale automated setting was achieved. This was integrated with a numerical computational software that allowed hands-free operation and a platform adaptable to biological variation over the course of a production process. Platform robustness was proven with both technical and biological replicates and subsequently the platform was used to screen for the most favourable conditions for production of a pneumococcal serotype 4 vaccine candidate. This work establishes an effective automated platform that enabled the identification of the most suitable E. coli strain and genetic constructs to be used in ongoing early phase research and be further brought into preclinical trials.


Subject(s)
ADP Ribose Transferases/metabolism , Automation/methods , Bacterial Toxins/metabolism , Biotechnology/methods , Escherichia coli/metabolism , Exotoxins/metabolism , High-Throughput Screening Assays/methods , Polysaccharides, Bacterial/metabolism , Vaccines, Conjugate/biosynthesis , Virulence Factors/metabolism , Bacterial Vaccines/biosynthesis , Glycosylation , Humans , Pneumococcal Vaccines/biosynthesis , Technology, Pharmaceutical/methods , Pseudomonas aeruginosa Exotoxin A
15.
Nat Commun ; 11(1): 3469, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651386

ABSTRACT

Insertions and deletions (InDels) are frequently observed in natural protein evolution, yet their potential remains untapped in laboratory evolution. Here we introduce a transposon-based mutagenesis approach (TRIAD) to generate libraries of random variants with short in-frame InDels, and screen TRIAD libraries to evolve a promiscuous arylesterase activity in a phosphotriesterase. The evolution exhibits features that differ from previous point mutagenesis campaigns: while the average activity of TRIAD variants is more compromised, a larger proportion has successfully adapted for the activity. Different functional profiles emerge: (i) both strong and weak trade-off between activities are observed; (ii) trade-off is more severe (20- to 35-fold increased kcat/KM in arylesterase with 60-400-fold decreases in phosphotriesterase activity) and (iii) improvements are present in kcat rather than just in KM, suggesting adaptive solutions. These distinct features make TRIAD an alternative to widely used point mutagenesis, accessing functional innovations and traversing unexplored fitness landscape regions.


Subject(s)
INDEL Mutation/genetics , Evolution, Molecular , Humans , Mutagenesis/genetics , Mutagenesis/physiology , Phosphoric Triester Hydrolases/genetics , Phosphoric Triester Hydrolases/metabolism , Synthetic Biology/methods
16.
Vaccine ; 36(26): 3809-3819, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29778517

ABSTRACT

Streptococcus pneumoniae is the leading cause of bacterial pneumonia. Although this is a vaccine preventable disease, S. pneumoniae still causes over 1 million deaths per year, mainly in children under the age of five. The biggest disease burden is in the developing world, which is mainly due to unavailability of vaccines due to their high costs. Protein polysaccharide conjugate vaccines are given routinely in the developed world to children to induce a protective antibody response against S. pneumoniae. One of these vaccines is Prevnar13, which targets 13 of the 95 known capsular types. Current vaccine production requires growth of large amounts of the 13 serotypes, and isolation of the capsular polysaccharide that is then chemically coupled to a protein, such as the diphtheria toxoid CRM197, in a multistep expensive procedure. In this study, we design, purify and produce novel recombinant pneumococcal protein polysaccharide conjugate vaccines in Escherichia coli, which act as mini factories for the low-cost production of conjugate vaccines. Recombinant vaccine efficacy was tested in a murine model of pneumococcal pneumonia; ability to protect against invasive disease was compared to that of Prevnar13. This study provides the first proof of principle that protein polysaccharide conjugate vaccines produced in E. coli can be used to prevent pneumococcal infection. Vaccines produced in this manner may provide a low-cost alternative to the current vaccine production methodology.


Subject(s)
Pneumococcal Vaccines/economics , Pneumococcal Vaccines/immunology , Pneumonia, Pneumococcal/prevention & control , Polysaccharides, Bacterial/immunology , Streptococcus pneumoniae/immunology , Technology, Pharmaceutical/economics , Technology, Pharmaceutical/methods , Animals , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Mice , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/isolation & purification , Pneumonia, Pneumococcal/immunology , Treatment Outcome , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/economics , Vaccines, Conjugate/immunology , Vaccines, Conjugate/isolation & purification , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/economics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification
17.
EMBO J ; 36(16): 2373-2389, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28694244

ABSTRACT

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates ß-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.


Subject(s)
Cell Communication , Endothelial Cells/physiology , Melanocytes/physiology , Cadherins/analysis , Cell Line , Cysteine-Rich Protein 61/analysis , Gene Expression Regulation , Humans , Mass Spectrometry , beta Catenin/analysis
18.
Open Biol ; 6(4): 150243, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27110302

ABSTRACT

Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology.


Subject(s)
Bacterial Capsules/metabolism , Escherichia coli/metabolism , Polysaccharides, Bacterial/metabolism , Recombination, Genetic/genetics , Streptococcus pneumoniae/metabolism , Biosynthetic Pathways/genetics , DNA Transposable Elements/genetics , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Genes, Bacterial , Genetic Loci , Immunoblotting , Lipopolysaccharides/metabolism , Mutation/genetics , Serotyping , Streptococcus pneumoniae/genetics
19.
J Bacteriol ; 185(5): 1543-54, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12591871

ABSTRACT

We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the alpha-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 10(4)-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.


Subject(s)
Adaptation, Physiological/physiology , Antigens, Bacterial , Bacterial Proteins/metabolism , Mycobacterium smegmatis/physiology , Oxygen/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , Carbon/metabolism , Cell Division/genetics , Gene Expression Regulation, Bacterial , Genes, Regulator , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hot Temperature , Mutation , Nitroreductases/genetics , Nitroreductases/metabolism , Oxidative Stress , Promoter Regions, Genetic , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL