Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Genet Mol Biol ; 36(1): 1-6, 2013 03.
Article in English | MEDLINE | ID: mdl-23569401

ABSTRACT

Deletions in GSTM1 and GSTT1 genes are considered to be a risk factor for cancer development but the exact location of these deletions in the genome was unknown. Three main objectives of the current study were to: (a) identify the boundaries of these deletions in the human genome, (b) screen homozygous (-/-) and heterozygous (+/-) deleted, as well as homozygous present (+/+) individuals using PCR assays, (c) detect associations of pharyngeal (PC) and laryngeal cancer (LC) with the respective genotypes. In total, 102 PC and 92 LC patients were screened and compared with 150 controls. PCR mapping and sequencing revealed a 6 kbp deletion for GSTM1 and a 9 kbp deletion for the GSTT1 gene. The mean age of PC cases was 48.1 (±16.7) years; for LC cases it was 48.5 (±17.4) years and for controls 46 (±17.7) years. The OR (odds ratio) for the GSTM1 null genotype in PC and LC cases was 10.2 and 1.0 (95% CI 5.04-20.7 and 1.1-1.7) respectively. Similarly, for GSTT1 the OR was 4.02 with a 95% CI of 2.3-7.1 in PC cases. For LC cases the OR was 0.8 with 95% CI of 0.4-1.7. A non-significant number of LC and PC patients had heterozygous deletions of GSTM1 compared to controls (OD 0.5, 95% CI 0.2- 1.6 and OR 0.5, 95% CI 0.2- 1.5 respectively). The GSTT1 gene also showed a non-significant association in PC (OD 0.9, 95% CI 0.4-1.9), as well as in LC patients (OD 0.7, 95% CI 0.3-1.7). The homozygous genotype was significantly associated with PC and LC, whereas the heterozygous was not so. The GSTM1 (-/-) and GSTT1 (-/-) genotypes are a risk factor for LC and PC, whereas the (+/-) genotypes are not.

2.
Genet Mol Biol ; 34(4): 533-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22215953

ABSTRACT

CYP1A1 is the phase I enzyme that detoxifies the carcinogen or converts it into a more electrophilic form, metabolized by phase II enzymes like GSTP1. These detoxifying genes have been extensively studied in association with head and neck cancer (HNC) in different ethnic groups worldwide. The current study was aimed at screening genetic polymorphisms of genes CYP1A1 and GSTP1 in 388 Pakistani HNC patients and 150 cancer-free healthy controls, using PCR-SSCP. No already known variants of either gene were found, however a novel frameshift mutation due to insertion of T (g.2842_2843insT) was observed in the CYP1A1 gene. A statistically significant number (5.4%) of HNC cases, with the mean age of 51.75 (±15.7) years, presented this frameshift mutation in the conserved domain of CYP1A1. Another novel substitution mutation in was found in the GSTP1 gene, presenting TA instead of AG. The g.2848A > T polymorphism causes a leucine-to-leucine formation, whereas g.2849G > A causes alanine-to-threonine formation at amino acid positions 166 and 167, respectively. These exonic mutations were found in 9.5% of the HNC patients and in none of the controls. In addition, two intronic deletions of C (g.1074delC and g.1466delC) were also found in 11 patients with a mean age of 46.2 (±15.6) years. In conclusion, accumulation of mutations in genes CYP1A1 and GSTP1 appears to be associated with increased risk of developing HNC, suggesting that mutations in these genes may play a role in the etiology of head and neck cancer.

3.
Genet. mol. biol ; Genet. mol. biol;34(4): 533-538, 2011. graf, tab
Article in English | LILACS | ID: lil-605924

ABSTRACT

CYP1A1 is the phase I enzyme that detoxifies the carcinogen or converts it into a more electrophilic form, metabolized by phase II enzymes like GSTP1. These detoxifying genes have been extensively studied in association with head and neck cancer (HNC) in different ethnic groups worldwide. The current study was aimed at screening genetic polymorphisms of genes CYP1A1 and GSTP1 in 388 Pakistani HNC patients and 150 cancer-free healthy controls, using PCR-SSCP. No already known variants of either gene were found, however a novel frameshift mutation due to insertion of T (g.2842_2843insT) was observed in the CYP1A1 gene. A statistically significant number (5.4 percent) of HNC cases, with the mean age of 51.75 (±15.7) years, presented this frameshift mutation in the conserved domain of CYP1A1. Another novel substitution mutation in was found in the GSTP1 gene, presenting TA instead of AG. The g.2848A > T polymorphism causes a leucine-to-leucine formation, whereas g.2849G > A causes alanine-to-threonine formation at amino acid positions 166 and 167, respectively. These exonic mutations were found in 9.5 percent of the HNC patients and in none of the controls. In addition, two intronic deletions of C (g.1074delC and g.1466delC) were also found in 11 patients with a mean age of 46.2 (±15.6) years. In conclusion, accumulation of mutations in genes CYP1A1 and GSTP1 appears to be associated with increased risk of developing HNC, suggesting that mutations in these genes may play a role in the etiology of head and neck cancer.


Subject(s)
Humans , Male , Female , Cytochrome P-450 CYP1A1 , Glutathione S-Transferase pi , Head and Neck Neoplasms , Mutation , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL