Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 4(3): 992-1003, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559728

ABSTRACT

Single-step retrosynthesis in organic chemistry increasingly benefits from deep learning (DL) techniques in computer-aided synthesis design. While template-free DL models are flexible and promising for retrosynthesis prediction, they often ignore vital 2D molecular information and struggle with atom alignment for node generation, resulting in lower performance compared to the template-based and semi-template-based methods. To address these issues, we introduce node-aligned graph-to-graph (NAG2G), a transformer-based template-free DL model. NAG2G combines 2D molecular graphs and 3D conformations to retain comprehensive molecular details and incorporates product-reactant atom mapping through node alignment, which determines the order of the node-by-node graph outputs process in an autoregressive manner. Through rigorous benchmarking and detailed case studies, we have demonstrated that NAG2G stands out with its remarkable predictive accuracy on the expansive data sets of USPTO-50k and USPTO-FULL. Moreover, the model's practical utility is underscored by its successful prediction of synthesis pathways for multiple drug candidate molecules. This proves not only NAG2G's robustness but also its potential to revolutionize the prediction of complex chemical synthesis processes for future synthetic route design tasks.

2.
Nat Commun ; 15(1): 1904, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429314

ABSTRACT

Gas separation is crucial for industrial production and environmental protection, with metal-organic frameworks (MOFs) offering a promising solution due to their tunable structural properties and chemical compositions. Traditional simulation approaches, such as molecular dynamics, are complex and computationally demanding. Although feature engineering-based machine learning methods perform better, they are susceptible to overfitting because of limited labeled data. Furthermore, these methods are typically designed for single tasks, such as predicting gas adsorption capacity under specific conditions, which restricts the utilization of comprehensive datasets including all adsorption capacities. To address these challenges, we propose Uni-MOF, an innovative framework for large-scale, three-dimensional MOF representation learning, designed for multi-purpose gas prediction. Specifically, Uni-MOF serves as a versatile gas adsorption estimator for MOF materials, employing pure three-dimensional representations learned from over 631,000 collected MOF and COF structures. Our experimental results show that Uni-MOF can automatically extract structural representations and predict adsorption capacities under various operating conditions using a single model. For simulated data, Uni-MOF exhibits remarkably high predictive accuracy across all datasets. Additionally, the values predicted by Uni-MOF correspond with the outcomes of adsorption experiments. Furthermore, Uni-MOF demonstrates considerable potential for broad applicability in predicting a wide array of other properties.

3.
BMC Med Genomics ; 16(1): 160, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422626

ABSTRACT

BACKGROUND: Cutaneous melanoma (CM) has an overall poor prognosis due to a high rate of metastasis. This study aimed to explore the role of hypoxia-related genes (HRGs) in CM. METHODS: We first used on-negative matrix factorization consensus clustering (NMF) to cluster CM samples and preliminarily analyzed the relationship of HRGs to CM prognosis and immune cell infiltration. Subsequently, we identified prognostic-related hub genes by univariate COX regression analysis and the least absolute shrinkage and selection operator (LASSO) and constructed a prognostic model. Finally, we calculated a risk score for patients with CM and investigated the relationship between the risk score and potential surrogate markers of response to immune checkpoint inhibitors (ICIs), such as TMB, IPS values, and TIDE scores. RESULTS: Through NMF clustering, we identified high expression of HRGs as a risk factor for the prognosis of CM patients, and at the same time, increased expression of HRGs also indicated a poorer immune microenvironment. Subsequently, we identified eight gene signatures (FBP1, NDRG1, GPI, IER3, B4GALNT2, BGN, PKP1, and EDN2) by LASSO regression analysis and constructed a prognostic model. CONCLUSION: Our study identifies the prognostic significance of hypoxia-related genes in melanoma and shows a novel eight-gene signature to predict the potential efficacy of ICIs.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Genes, Regulator , Hypoxia/genetics , Prognosis , Tumor Microenvironment , Melanoma, Cutaneous Malignant
4.
Chin Med ; 17(1): 28, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193614

ABSTRACT

BACKGROUND: Melanoma is among the most aggressive types of skin malignancy and can have an unpredictable clinical course. Exploration of novel therapeutic targets and their regulators remains essential for the prevention and treatment of melanoma. METHODS: HSDL2 protein levels were examined by immunohistochemistry. The roles of HSDL2 in cell proliferation and apoptosis were identified by CCK-8 and colony formation assays. The function of HSDL2 in cell apoptosis was analysed by flow cytometry. Western blotting, cell proliferation and apoptosis and a xenograft tumour model were utilized to explore the inhibitory functions and mechanisms of CuE in melanoma. RESULTS: HSDL2 is overexpressed in melanoma and promotes melanoma progression by activating the ERK and AKT pathways. CuE could inhibit the ERK and AKT pathways by decreasing HSDL2 expression; therefore, CuE could inhibit melanoma growth in vitro and in vivo. CONCLUSION: HSDL2 may be a promising therapeutic target against melanoma, and CuE can inhibit melanoma by downregulating HSDL2 expression.

5.
IEEE Trans Neural Netw Learn Syst ; 32(4): 1713-1722, 2021 04.
Article in English | MEDLINE | ID: mdl-32365037

ABSTRACT

For a target task where the labeled data are unavailable, domain adaptation can transfer a learner from a different source domain. Previous deep domain adaptation methods mainly learn a global domain shift, i.e., align the global source and target distributions without considering the relationships between two subdomains within the same category of different domains, leading to unsatisfying transfer learning performance without capturing the fine-grained information. Recently, more and more researchers pay attention to subdomain adaptation that focuses on accurately aligning the distributions of the relevant subdomains. However, most of them are adversarial methods that contain several loss functions and converge slowly. Based on this, we present a deep subdomain adaptation network (DSAN) that learns a transfer network by aligning the relevant subdomain distributions of domain-specific layer activations across different domains based on a local maximum mean discrepancy (LMMD). Our DSAN is very simple but effective, which does not need adversarial training and converges fast. The adaptation can be achieved easily with most feedforward network models by extending them with LMMD loss, which can be trained efficiently via backpropagation. Experiments demonstrate that DSAN can achieve remarkable results on both object recognition tasks and digit classification tasks. Our code will be available at https://github.com/easezyc/deep-transfer-learning.

6.
J Immunol ; 194(8): 4019-28, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25769926

ABSTRACT

The symptoms of vaginal candidiasis exacerbate in the second half of the menstrual cycle in premenopausal women when the serum estradiol level is elevated. Estradiol has been shown to inhibit Th17 differentiation and production of antifungal IL-17 cytokines. However, little is known about the mechanisms. In the present study, we used mouse splenocytes and found that estradiol inhibited Th17 differentiation through downregulation of Rorγt mRNA and protein expression. Estradiol activated estrogen receptor (ER)α to recruit repressor of estrogen receptor activity (REA) and form the ERα/REA complex. This complex bound to three estrogen response element (ERE) half-sites on the Rorγt promoter region to suppress Rorγt expression. Estradiol induced Rea mRNA and protein expression in mouse splenocytes. Using Rea small interfering RNA to knock down Rea expression enhanced Rorγt expression and Th17 differentiation. Alternatively, histone deacetylase 1 and 2 bound to the three ERE half-sites, independent of estradiol. Histone deacetylase inhibitor MS-275 dose- and time-dependently increased Rorγt expression and subsequently enhanced Th17 differentiation. In 15 healthy premenopausal women, high serum estradiol levels are correlated with low RORγT mRNA levels and high REA mRNA levels in the vaginal lavage. These results demonstrate that estradiol upregulates REA expression and recruits REA via ERα to the EREs on the RORγT promoter region, thus inhibiting RORγT expression and Th17 differentiation. This study suggests that the estradiol/ERα/REA axis may be a feasible target in the management of recurrent vaginal candidiasis.


Subject(s)
Cell Differentiation/immunology , Estradiol/immunology , Estrogen Receptor alpha/immunology , Multiprotein Complexes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Repressor Proteins/immunology , Response Elements/immunology , Th17 Cells/immunology , Transcription, Genetic/immunology , Adult , Animals , Benzamides/pharmacology , Candidiasis/immunology , Candidiasis/pathology , Dose-Response Relationship, Drug , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Prohibitins , Pyridines/pharmacology , Th17 Cells/pathology , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Up-Regulation/immunology , Vagina/immunology , Vagina/pathology
SELECTION OF CITATIONS
SEARCH DETAIL