Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Heliyon ; 10(14): e34362, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108857

ABSTRACT

Background: E2F7 is a recently discovered member of the E2F family. Investigating the function and mechanism of E2F7 in the growth of tumors is significant for the clinical diagnosis and therapy of these malignancies. Objective: The purpose of this review is to provide theoretical basis for the diagnosis and treatment of malignant tumors by exploring E2F7. Methods: The relevant information was collected through the PubMed database using keyword searches "E2F7" and "cancer". Results: On the one hand, E2F7 plays an essential role in embryonic development, angiogenesis, and the nervous system. On the other hand, E2F7 is also linked to the occurrence and growth of various malignant tumors. Conclusion: E2F7 has potential as a therapeutic target in future cancer treatments.

2.
Front Pharmacol ; 15: 1401627, 2024.
Article in English | MEDLINE | ID: mdl-39101149

ABSTRACT

Background: Ophiopogon D is an important natural organic compound in Ophiopogon japonicus, which often has significant biological activity. Purpose: The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of OP-D in recent years. Method: PubMed and Web of Science were searched with the keywords:"Ophiopogon japonicus", "Ophiopogon D" "pharmacology", and "pharmacokinetics". There was no restriction on the publication year, and the last search was conducted on 1 Jan 2024. Results: Emerging evidence suggests that OP-D possess numerous pharmacological activities, including bone protection, cardiovascular protection, immune regulation, anti-cancer, anti-atherosclerosis, anti-inflammatory and anti-NAFLD. Conclusion: OP-D has a potential value in the prevention and treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of OP-D.

3.
Front Cell Neurosci ; 18: 1408364, 2024.
Article in English | MEDLINE | ID: mdl-38994325

ABSTRACT

Necrostatin-1, a small molecular alkaloid, was identified as an inhibitor of necroptosis in 2005. Investigating the fundamental mechanism of Necrostatin-1 and its role in various diseases is of great significance for scientific and clinical research. Accumulating evidence suggests that Necrostatin-1 plays a crucial role in numerous neurological disorders. This review aims to provide a comprehensive overview of the potential functions of Necrostatin-1 in various neurological disorders, offering valuable insights for future research.

4.
Front Cell Dev Biol ; 12: 1428250, 2024.
Article in English | MEDLINE | ID: mdl-38966429

ABSTRACT

Oxeiptosis is a novel cell death pathway that was introduced in 2018. As a form of regulated cell death, it operates independently of caspases and is induced by ROS. Distinguished from other cell death pathways such as apoptosis, necroptosis, pyroptosis, and ferroptosis, oxeiptosis features unique damage causes pivotal genes, and signaling pathways (KEAP1/PGAM5/AIFM1). Emerging studies indicate that oxeiptosis plays a significant role in the progression of various diseases and its regulation could serve as a promising therapeutic target. However, the precise molecular mechanisms underlying oxeiptosis remain to be fully elucidated. In this mini-review, we systematically summarize the latest developments in oxeiptosis-related diseases while detailing the molecular mechanisms and regulatory networks of oxeiptosis. These insights offer a foundation for a deeper understanding of oxeiptosis.

5.
Ibrain ; 10(2): 172-185, 2024.
Article in English | MEDLINE | ID: mdl-38915950

ABSTRACT

We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug-disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.

6.
Anal Methods ; 16(17): 2721-2731, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38629244

ABSTRACT

Acetamiprid is an organic and highly toxic compound. Despite being widely used as a pesticide agent on a large scale, acetamiprid poses numerous health risks to living organisms, particularly humans. Herein, a strategy for the detection of acetamiprid in tea employing surface-enhanced Raman scattering (SERS) technology incorporated with a microfluidic chip was developed. Significantly, a seed-mediated growth approach was utilized to engineer Ag-coated tetrapod gold nanostars (core-shell Au@AgNSs) with four sharp tips. The synthesized Au@AgNSs showed an enhancement factor of 7.2 × 106. Solid works was used to figure out the two-channel microfluidic chip featuring four circular split hybrid structures, and COMSOL (Software for Multiphysics Simulation) was utilized to model the fusion effect between the substrate (Au@AgNSs) and the sample (acetamiprid). For the first time, the core-shell Au@AgNSs and acetamiprid were fused in the microfluidic channel to facilitate the detection of acetamiprid using SERS. The outcomes pointed out that the standard curve correlation coefficient between SERS intensity (876 cm-1) and the concentration of acetamiprid in tea specimens was calculated as 0.991, while the limit of detection (LOD) was 0.048 ng mL-1, which is well below the minimum limit set by the European Union (10 ng mL-1). Thus, the developed technique combining SERS and microfluidics demonstrated high potential for the rapid and efficient detection of acetamiprid in tea.


Subject(s)
Gold , Metal Nanoparticles , Neonicotinoids , Silver , Spectrum Analysis, Raman , Tea , Gold/chemistry , Tea/chemistry , Neonicotinoids/analysis , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Limit of Detection , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
7.
J Chromatogr A ; 1722: 464911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626541

ABSTRACT

In this study, we have synthesised a chiral l-hyp-Ni/Fe@SiO2 composite as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) for the first time. This was achieved by coating two-dimensional (2D) chiral metal-organic framework nanosheets (MONs) l-hyp-Ni/Fe onto the surface of activated SiO2 microspheres using the "wrapped in net" method. The separation efficiency of the l-hyp-Ni/Fe chromatographic column was systematically evaluated in normal-phase HPLC (NP-HPLC) and reversed-phase HPLC (RP-HPLC) configurations, employing various racemates as analytes. The findings revealed that 16 chiral compounds were separated using NP-HPLC, and five were separated using RP-HPLC, encompassing alcohols, amines, ketones, esters, alkanes, ethers, amino acids and sulfoxides. Notably, the resolution (Rs) of nine chiral compounds exceeded 1.5, indicating baseline separation. Furthermore, the resolution performance of the l-hyp-Ni/Fe@SiO2-packed column was compared with that of Chiralpak AD-H. It was observed that certain enantiomers, which either could not be resolved or were inadequately separated on the Chiralpak AD-H column, attained separation on the 2D chiral MONs column. These findings suggest a complementary relationship between the two columns in racemate separation, with their combined application facilitating the resolution of a broader spectrum of chiral compounds. In addition, baseline separation was achieved for five positional isomers on the l-hyp-Ni/Fe@SiO2-packed column. The effects of the analyte mass and column temperature on the resolution were also examined. Moreover, during HPLC analysis, the l-hyp-Ni/Fe columns demonstrated commendable repeatability, stability and reproducibility in enantiomer separation. This research not only advances the utilisation of 2D chiral MONs as CSPs but also expands their applications in the separation sciences.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Metal-Organic Frameworks/chemistry , Stereoisomerism , Nanostructures/chemistry , Iron/chemistry , Nickel/chemistry
8.
J Biol Chem ; 300(5): 107270, 2024 May.
Article in English | MEDLINE | ID: mdl-38599381

ABSTRACT

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glucose , Kidney Neoplasms , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glucose/deficiency , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Amino Acid Transport Systems , Symporters
12.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309505

ABSTRACT

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Subject(s)
Bromodomain Containing Proteins , Cell Cycle Proteins , Liver Neoplasms , Nuclear Proteins , Transcription Factors , Ubiquitin-Specific Proteases , Humans , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Genes, Tumor Suppressor , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Retinoblastoma Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/metabolism
13.
Sensors (Basel) ; 24(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339728

ABSTRACT

Optical encryption based on single-pixel imaging (SPI) has made great advances with the introduction of deep learning. However, the use of deep neural networks usually requires a long training time, and the networks need to be retrained once the target scene changes. With this in mind, we propose an SPI encryption scheme based on an attention-inserted physics-driven neural network. Here, an attention module is used to encrypt the single-pixel measurement value sequences of two images, together with a sequence of cryptographic keys, into a one-dimensional ciphertext signal to complete image encryption. Then, the encrypted signal is fed into a physics-driven neural network for high-fidelity decoding (i.e., decryption). This scheme eliminates the need for pre-training the network and gives more freedom to spatial modulation. Both simulation and experimental results have demonstrated the feasibility and eavesdropping resistance of this scheme. Thus, it will lead SPI-based optical encryption closer to intelligent deep encryption.

14.
Mini Rev Med Chem ; 24(4): 391-402, 2024.
Article in English | MEDLINE | ID: mdl-37259932

ABSTRACT

Canopy FGF signaling regulator 2 (CNPY2) is a novel angiogenic growth factor. In recent years, increasing evidence highlights that CNPY2 has important functions in health and disease. Many new blood vessels need to be formed to meet the nutrient supply in the process of tumor growth. CNPY2 can participate in the development of tumors by promoting angiogenesis. CNPY2 also enhances neurite outgrowth in neurologic diseases and promotes cell proliferation and tissue repair, thereby improving cardiac function in cardiovascular diseases. Regrettably, there are few studies on CNPY2 in various diseases. At the same time, its biological function and molecular mechanism in the process and development of disease are still unclear. This paper reviews the recent studies on CNPY2 in cervical cancer, renal cell carcinoma, prostate cancer, colorectal cancer, lung cancer, gastric cancer, hepatocellular carcinoma, cerebral ischemia-reperfusion injury, spinal cord ischemia-reperfusion injury, Parkinson's disease, ischemic heart disease, myocardial ischemiareperfusion injury, myocardial infarction, heart failure, and non-alcoholic fatty liver disease. The biological function and molecular mechanism of CNPY2 in these diseases have been summarized in this paper. Many drugs that play protective roles in tumors, cardiovascular diseases, non-alcoholic fatty liver disease, and neurologic diseases by targeting CNPY2, have also been summarized in this paper. In addition, the paper also details the biological functions and roles of canopy FGF signaling regulator 1 (CNPY1), canopy FGF signaling regulator 3 (CNPY3), canopy FGF signaling regulator 4 (CNPY4), and canopy FGF signaling regulator 5 (CNPY5). The mechanism and function of CNPY2 should be continued to study in order to accelerate disease prevention in the future.


Subject(s)
Cardiovascular Diseases , Liver Neoplasms , Lung Neoplasms , Non-alcoholic Fatty Liver Disease , Reperfusion Injury , Male , Humans , Adaptor Proteins, Signal Transducing/metabolism , Lung Neoplasms/pathology
15.
Chemosphere ; 345: 140558, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898462

ABSTRACT

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox), a widely used organoarsenical feed additive, can enter soils and be further biotransformed into various arsenic species that pose human health and ecological risks. However, the pathway and molecular mechanism of Rox biotransformation by soil microbes are not well studied. Therefore, in this study, we isolated a Rox-transforming bacterium from manure-fertilized soil and identified it as Pseudomonas chlororaphis through morphological analysis and 16S rRNA gene sequencing. Pseudomonas chlororaphis was able to biotransform Rox to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), arsenate [As(V)], arsenite [As(III)], and dimethylarsenate [DMAs(V)]. The complete genome of Pseudomonas chlororaphis was sequenced. PcmdaB, encoding a nitroreductase, and PcnhoA, encoding an acetyltransferase, were identified in the genome of Pseudomonas chlororaphis. Expression of PcmdaB and PcnhoA in E. coli Rosetta was shown to confer Rox(III) and 3-AHPAA(III) resistance through Rox nitroreduction and 3-AHPAA acetylation, respectively. The PcMdaB and PcNhoA enzymes were further purified and functionally characterized in vitro. The kinetic data of both PcMdaB and PcNhoA were well fit to the Michaelis-Menten equation, and nitroreduction catalyzed by PcMdaB is the rate-limiting step for Rox transformation. Our results provide new insights into the environmental risk assessment and bioremediation of Rox(V)-contaminated soils.


Subject(s)
Arsenic , Pseudomonas chlororaphis , Roxarsone , Humans , Pseudomonas chlororaphis/metabolism , Soil , Acetyltransferases , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Escherichia coli/metabolism , Arsenic/metabolism , Biotransformation , Nitroreductases/metabolism
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1315-1321, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846678

ABSTRACT

OBJECTIVE: To explore the effect of cytokine levels on early death and coagulation function of patients with newly diagnosed acute promyelocytic leukemia (APL). METHODS: Routine examination was performed on 69 newly diagnosed APL patients at admission. Meanwhile, 4 ml fasting venous blood was extracted from the patients. And then the supernatant was taken after centrifugation. The concentrations of cytokines, lactate dehydrogenase (LDH) and ferritin were detected by using the corresponding kits. RESULTS: It was confirmed that cerebral hemorrhage was a major cause of early death in APL patients. Elevated LDH, decreased platelets (PLT) count and prolonged prothrombin time (PT) were high risk factors for early death (P <0.05). The increases of IL-5, IL-6, IL-10, IL-12p70 and IL-17A were closely related to the early death of newly diagnosed APL patients, and the increases of IL-5 and IL-17A also induced coagulation disorder in APL patients by prolonging PT (P <0.05). In newly diagnosed APL patients, ferritin and LDH showed a positive effect on the expression of IL-5, IL-10 and IL-17A, especially ferritin had a highly positive correlation with IL-5 (r =0.867) and IL-17A (r =0.841). Moreover, there was a certain correlation between these five high-risk cytokines, among which IL-5 and IL-17A (r =0.827), IL-6 and IL-10 (r =0.823) were highly positively correlated. CONCLUSION: Elevated cytokine levels in newly diagnosed APL patients increase the risk of early bleeding and death. In addition to the interaction between cytokines themselves, ferritin and LDH positively affect the expression of cytokines, thus affecting the prognosis of APL patients.


Subject(s)
Blood Coagulation Disorders , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/diagnosis , Cytokines/metabolism , Interleukin-10 , Interleukin-17/metabolism , Interleukin-6/metabolism , Interleukin-5/metabolism , Ferritins , Tretinoin
17.
Molecules ; 28(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37513164

ABSTRACT

Dicofol is a highly toxic residual pesticide in tea, which seriously endangers human health. A method for detecting dicofol in tea by combining stoichiometry with surface-enhanced Raman spectroscopy (SERS) technology was proposed in this study. AuNPs were prepared, and silver shells were grown on the surface of AuNPs to obtain core-shell Au@AgNPs. Then, the core-shell Au@AgNPs were attached to the surface of a PDMS membrane by physical deposition to obtain a Au@AgNPs/PDMS substrate. The limit of detection (LOD) of this substrate for 4-ATP is as low as 0.28 × 10-11 mol/L, and the LOD of dicofol in tea is 0.32 ng/kg, showing high sensitivity. By comparing the modeling effects of preprocessing and variable selection algorithms, it is concluded that the modeling effect of Savitzky-Golay combined with competitive adaptive reweighted sampling-partial least squares regression is the best (Rp = 0.9964, RPD = 10.6145). SERS technology combined with stoichiometry is expected to rapidly detect dicofol in tea without labels.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Dicofol , Gold/chemistry , Chemometrics , Metal Nanoparticles/chemistry , Tea/chemistry
18.
J Environ Manage ; 344: 118670, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37517116

ABSTRACT

To promote the intelligent and accurate management of river basins, especially large basins which involve many catchments, it is highly required to develop a useful platform to effectively coordinate arithmetic resources and data, and simultaneously help to make decisions based on the real-time calculation. In this study, a multi-centre cloud platform architecture called 3L4C was constructed, which includes a Cloud-edge-terminal Layer (3L), data centre, model centre, control centre, and customer-service centre (4C). Data fusion technology and an air-land-water coupled model were constructed. Based on HTML5, JavaScript, and Java, an integrated water environment management platform was created and applied to the Three Gorges Reservoir Basin, China. The platform was tested and successfully used for automatic water quality prediction, water environment pollution analysis and control, early warning of abnormal water quality, and emergency water pollution incident evaluation. This platform quickly and accurately forecasts and perfectly displays past, present and future state of the water environment, and offers beneficial support for management decisions in various water environment departments.


Subject(s)
Cloud Computing , Conservation of Natural Resources , Water Quality , Water Pollution/analysis , Rivers , China
19.
Front Vet Sci ; 10: 1133752, 2023.
Article in English | MEDLINE | ID: mdl-37275613

ABSTRACT

Eggshell translucency severely affects external egg quality, and variations in the eggshell or eggshell membrane are considered the structural basis of the trait. Research has shown that 1.85% additional mixed fatty acids in the diet would greatly decrease the occurrence of eggshell translucency. Only a few studies have examined the phenotypic regularity of eggshell translucency with the increasing age of hens. Therefore, two strains, 1139 Rhode Island Red-White (RIR-White) and 836 Dwarf Layer-White (DWL-White), were used, and from each strain, 30 hens each that consecutively laid translucent or opaque eggs at 67 wks of age were selected. Subsequently, eggshell translucency, internal quality and external quality of eggs, and total cholesterol, albumin, calcium binding protein and other physiological indicators related to lipid, lipoprotein, and calcium metabolisms at the 75th, 79th, and 83rd wks of age in the late phase of the laying cycle were determined. Results: (1) In terms of flocks, for both strains, the translucency scores of the translucent groups were significantly higher than those of the opaque groups (P < 0.05); in terms of individuals, 81.1% RIR-White and 82.8% DWL-White hens consecutively laid eggs of the same or similar translucency, indicating the stability of the trait with increasing hen age; (2) In RIR-White, the eggshell strength of the translucent group at 75 weeks was significantly higher than that of the opaque group (P < 0.05); in DWL-White, the eggshell membrane thickness of the translucent group at the 75th and 83rd weeks was significantly lower than that of the opaque group (P < 0.05); (3) Compared to the opaque groups, the translucent groups had lower total cholesterol content in both RIR-White and DWL-White, lower albumin content in DWL-White at the 79th weeks (P < 0.05), and higher calcium-binding protein (CALB1) in RIR-White at the 83rd weeks (P < 0.05). In summary, this study illustrates the stability of eggshell translucency in late-phase laying hens and provides a reference of physiological indicators for exploring the formation of translucent eggs.

20.
Int J Gen Med ; 16: 2263-2270, 2023.
Article in English | MEDLINE | ID: mdl-37304901

ABSTRACT

Background: Proteins contained in the conserved YTH521-b homologous (YTH) domain, have m6A-dependent RNA binding activity. As an important part of YTH domain family proteins, YTHDF1 and YTHDF3 were shown to be associated with many cancers. This paper aimed to reveal the relationship between the expression of these two proteins and the clinical prognosis of OSCC, providing certain guidance for clinical treatment of OSCC. Methods: We detected the expression of YTHDF1 and YTHDF3 in 120 OSCC patients by immunohistochemical analysis. Statistical analysis was used to determine whether the high or low expression of these two genes was significantly associated with age, gender, histological type, clinical stage, or lymph node metastasis. The correlation curve and survival curve of the two genes were produced to evaluate the potential clinical significance. Results: We find the expression of YTHDF1 and YTHDF3 was increased in OSCC tissues compared to adjacent normal tissues. The statistical analysis showed that the expression of YTHDF1 and YTHDF3 was significantly associated with the clinical stage and histological type in OSCC patients. There was also a significant correlation between the expression of YTHDF1 and YTHDF3. A high expression of YTHDF1 and YTHDF3 was related to poor patient prognosis. Conclusion: Our findings suggest that a high expression of YTHDF1 and YTHDF3 may be related to poor patient prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL