Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4227, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762592

ABSTRACT

Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vß21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vß21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vß21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.


Subject(s)
COVID-19 , Interleukin-18 , Killer Cells, Natural , Monocytes , Signal Transduction , Systemic Inflammatory Response Syndrome , fas Receptor , Humans , Interleukin-18/metabolism , Child , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , fas Receptor/metabolism , fas Receptor/genetics , Monocytes/immunology , Monocytes/metabolism , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/complications , Inflammasomes/metabolism , Inflammasomes/immunology , SARS-CoV-2/immunology , Adolescent , Male , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Female , Child, Preschool , Single-Cell Analysis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD28 Antigens/metabolism , Lymphocyte Activation/immunology , Receptors, Interleukin-18/metabolism , Receptors, Interleukin-18/genetics , Receptors, Interleukin-18/immunology
2.
Antibiotics (Basel) ; 12(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136735

ABSTRACT

Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure.

3.
Crit Care ; 27(1): 11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627688

ABSTRACT

PURPOSE: Respiratory infections are the most common reason for admission to paediatric intensive care units (PICU). Most patients with lower respiratory tract infection (LRTI) receive broad-spectrum antimicrobials, despite low rates of bacterial culture confirmation. Here, we evaluated a molecular diagnostic test for LRTI to inform the better use of antimicrobials. METHODS: The Rapid Assay for Sick Children with Acute Lung infection Study was a single-centre, prospective, observational cohort study of mechanically ventilated children (> 37/40 weeks corrected gestation to 18 years) with suspected community acquired or ventilator-associated LRTI. We evaluated the use of a 52-pathogen custom TaqMan Array Card (TAC) to identify pathogens in non-bronchoscopic bronchoalveolar lavage (mini-BAL) samples. TAC results were compared to routine microbiology testing. Primary study outcomes were sensitivity and specificity of TAC, and time to result. RESULTS: We enrolled 100 patients, all of whom were tested with TAC and 91 of whom had matching culture samples. TAC had a sensitivity of 89.5% (95% confidence interval (CI95) 66.9-98.7) and specificity of 97.9% (CI95 97.2-98.5) compared to routine bacterial and fungal culture. TAC took a median 25.8 h (IQR 9.1-29.8 h) from sample collection to result. Culture was significantly slower: median 110.4 h (IQR 85.2-141.6 h) for a positive result and median 69.4 h (IQR 52.8-78.6) for a negative result. CONCLUSIONS: TAC is a reliable and rapid adjunct diagnostic approach for LRTI in critically ill children, with the potential to aid early rationalisation of antimicrobial therapy.


Subject(s)
Pneumonia , Respiratory Tract Infections , Humans , Child , Prospective Studies , Critical Illness , Pneumonia/diagnosis , Respiratory Tract Infections/diagnosis , Bacteria , Bronchoalveolar Lavage Fluid/microbiology
4.
PLoS Genet ; 18(3): e1009776, 2022 03.
Article in English | MEDLINE | ID: mdl-35286304

ABSTRACT

Shotgun metagenomics is a powerful tool to identify antimicrobial resistance (AMR) genes in microbiomes but has the limitation that extrachromosomal DNA, such as plasmids, cannot be linked with the host bacterial chromosome. Here we present a comprehensive laboratory and bioinformatics pipeline HAM-ART (Hi-C Assisted Metagenomics for Antimicrobial Resistance Tracking) optimised for the generation of metagenome-assembled genomes including both chromosomal and extrachromosomal AMR genes. We demonstrate the performance of the pipeline in a study comparing 100 pig faecal microbiomes from low- and high-antimicrobial use pig farms (organic and conventional farms). We found significant differences in the distribution of AMR genes between low- and high-antimicrobial use farms including a plasmid-borne lincosamide resistance gene exclusive to high-antimicrobial use farms in three species of Lactobacilli. The bioinformatics pipeline code is available at https://github.com/lkalmar/HAM-ART.


Subject(s)
Anti-Infective Agents , Microbiota , Animals , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Metagenomics , Swine
5.
BMC Vet Res ; 16(1): 11, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924206

ABSTRACT

BACKGROUND: The introduction of rotavirus A vaccination across the developing world has not proved to be as efficacious as first hoped. One cause of vaccine failure may be infection by zoonotic rotaviruses that are very variable antigenically from the vaccine strain. However, there is a lack of genomic information about the circulating rotavirus A strains in farm animals in the developing world that may be a source of infection for humans. We therefore screened farms close to Accra, Ghana for animals sub-clinically infected with rotavirus A and then sequenced the virus found in one of these samples. RESULTS: 6.1% of clinically normal cows and pigs tested were found to be Rotavirus A virus antigen positive in the faeces. A subset of these (33.3%) were also positive for virus RNA. The most consistently positive pig sample was taken forward for metagenomic sequencing. This gave full sequence for all open reading frames except segment 5 (NSP1), which is missing a single base at the 5' end. The virus infecting this pig had genome constellation G5-P[7]-I5-R1-C1-M1-A8-N1-T7-E1-H1, a known porcine genotype constellation. CONCLUSIONS: Farm animals carry rotavirus A infection sub-clinically at low frequency. Although the rotavirus A genotype discovered here has a pig-like genome constellation, a number of the segments most closely resembled those isolated from humans in suspected cases of zoonotic transmission. Therefore, such viruses may be a source of variable gene segments for re-assortment with other viruses to cause vaccine breakdown. It is recommended that further human and pig strains are characterized in West Africa, to better understand this dynamic.


Subject(s)
Rotavirus Infections/veterinary , Rotavirus/isolation & purification , Swine Diseases/virology , Animals , Cattle , Cattle Diseases/virology , Feces/virology , Genome, Viral , Ghana/epidemiology , Phylogeny , RNA, Viral/isolation & purification , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Swine , Swine Diseases/epidemiology , Zoonoses/virology
6.
Sci Rep ; 9(1): 5047, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911085

ABSTRACT

Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil's target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death.


Subject(s)
Dioxoles/pharmacology , Histidine Kinase , Pyrroles/pharmacology , Pyruvaldehyde/metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Amino Acid Substitution , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Histidine Kinase/genetics , Histidine Kinase/metabolism , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Triose-Phosphate Isomerase/antagonists & inhibitors , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...