Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
J Nephrol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809363

ABSTRACT

BACKGROUND AND HYPOTHESIS: Kidney grafts from donors who died of stroke and related traits have worse outcomes relative to grafts from both living donors and those who died of other causes. We hypothesise that deceased donors, particularly those who died of stroke, have elevated polygenic burden for cerebrovascular traits. We further hypothesise that this donor polygenic burden is associated with inferior graft outcomes in the recipient. METHODS: Using a dataset of 6666 deceased and living kidney donors from seven different European ancestry transplant cohorts, we investigated the role of polygenic burden for cerebrovascular traits (hypertension, stroke, and intracranial aneurysm (IA)) on donor age of death and recipient graft outcomes. RESULTS: We found that kidney donors who died of stroke had elevated intracranial aneurysm and hypertension polygenic risk scores, compared to healthy controls and living donors. This burden was associated with age of death among donors who died of stroke. Increased donor polygenic risk for hypertension was associated with reduced long term graft survival (HR: 1.44, 95% CI [1.07, 1.93]) and increased burden for hypertension, and intracranial aneurysm was associated with reduced recipient estimated glomerular filtration rate (eGFR) at 1 year. CONCLUSIONS: Collectively, the results presented here demonstrate the impact of inherited factors associated with donors' death on long-term graft function.

2.
J Clin Pharmacol ; 64(8): 944-952, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38766706

ABSTRACT

Tacrolimus metabolism is heavily influenced by the CYP3A5 genotype, which varies widely among African Americans (AA). We aimed to assess the performance of a published genotype-informed tacrolimus dosing model in an independent set of adult AA kidney transplant (KTx) recipients. CYP3A5 genotypes were obtained for all AA KTx recipients (n = 232) from 2010 to 2019 who met inclusion criteria at a single transplant center in Philadelphia, Pennsylvania, USA. Medical record data were used to calculate predicted tacrolimus clearance using the published AA KTx dosing equation and two modified iterations. Observed and model-predicted trough levels were compared at 3 days, 3 months, and 6 months post-transplant. The mean prediction error at day 3 post-transplant was 3.05 ng/mL, indicating that the model tended to overpredict the tacrolimus trough. This bias improved over time to 1.36 and 0.78 ng/mL at 3 and 6 months post-transplant, respectively. Mean absolute prediction error-a marker of model precision-improved with time to 2.33 ng/mL at 6 months. Limiting genotype data in the model decreased bias and improved precision. The bias and precision of the published model improved over time and were comparable to studies in previous cohorts. The overprediction observed by the published model may represent overfitting to the initial cohort, possibly limiting generalizability.


Subject(s)
Black or African American , Cytochrome P-450 CYP3A , Genotype , Immunosuppressive Agents , Kidney Transplantation , Tacrolimus , Humans , Tacrolimus/pharmacokinetics , Tacrolimus/administration & dosage , Black or African American/genetics , Male , Female , Middle Aged , Cytochrome P-450 CYP3A/genetics , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Retrospective Studies , Adult , Transplant Recipients , Aged , Models, Biological
3.
Am J Transplant ; 24(10): 1794-1802, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38782187

ABSTRACT

Posttransplant diabetes mellitus (PTDM) is a prevalent complication of liver transplantation and is associated with cardiometabolic complications. We studied the consequences of genetic effects of liver donors and recipients on PTDM outcomes, focusing on the diverse genetic pathways related to insulin that play a role in the development of PTDM. One thousand one hundred fifteen liver transplant recipients without a pretransplant diagnosis of type 2 diabetes mellitus (T2D) and their paired donors recruited from 2 transplant centers had polygenic risk scores (PRS) for T2D, insulin secretion, and insulin sensitivity calculated. Among recipients in the highest T2D-PRS quintile, donor T2D-PRS did not contribute significantly to PTDM. However, in recipients with the lowest T2D genetic risk, donor livers with the highest T2D-PRS contributed to the development of PTDM (OR [95% CI] = 3.79 [1.10-13.1], P = .035). Recipient risk was linked to factors associated with insulin secretion (OR [95% CI] = 0.85 [0.74-0.98], P = .02), while donor livers contributed to PTDM via gene pathways involved in insulin sensitivity (OR [95% CI] = 0.86 [0.75-0.99], P = .03). Recipient and donor PRS independently and collectively serve as predictors of PTDM onset. The genetically influenced biological pathways in recipients primarily pertain to insulin secretion, whereas the genetic makeup of donors exerts an influence on insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Transplantation , Postoperative Complications , Tissue Donors , Transplant Recipients , Humans , Female , Male , Liver Transplantation/adverse effects , Middle Aged , Risk Factors , Diabetes Mellitus, Type 2/genetics , Postoperative Complications/genetics , Postoperative Complications/etiology , Prognosis , Follow-Up Studies , Insulin Resistance , Adult , Graft Survival , Genetic Predisposition to Disease
4.
Med ; 5(8): 1016-1029.e4, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38776915

ABSTRACT

BACKGROUND: Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS: Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS: Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING: This work was supported by NIH RM1HG009491 and DP5OD033430.


Subject(s)
Graft Rejection , Kidney Transplantation , Transplantation, Heterologous , Animals , Transplantation, Heterologous/adverse effects , Transplantation, Heterologous/methods , Humans , Swine , Graft Rejection/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Single-Cell Analysis , Heterografts/immunology , RNA-Seq , Sequence Analysis, RNA , Kidney/immunology , Kidney/metabolism
5.
Am J Transplant ; 24(6): 1003-1015, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331047

ABSTRACT

African American (AA) kidney recipients have a higher risk of allograft rejection and failure compared to non-AAs, but to what extent these outcomes are due to genetic versus environmental effects is currently unknown. Herein, we tested the effects of recipient self-reported race versus genetic proportion of African ancestry (pAFR), and neighborhood socioeconomic status (SES) on kidney allograft outcomes in multiethnic kidney transplant recipients from Columbia University (N = 1083) and the University of Pennsylvania (N = 738). All participants were genotyped with SNP arrays to estimate genetic admixture proportions. US census tract variables were used to analyze the effect of neighborhood factors. In both cohorts, self-reported recipient AA race and pAFR were individually associated with increased risk of rejection and failure after adjustment for known clinical risk factors and neighborhood SES factors. Joint analysis confirmed that self-reported recipient AA race and pAFR were both associated with a higher risk of allograft rejection (AA: HR 1.61 (1.31-1.96), P = 4.05E-06; pAFR: HR 1.90 (1.46-2.48), P = 2.40E-06) and allograft failure (AA: HR 1.52 (1.18-1.97), P = .001; pAFR: HR 1.70 (1.22-2.35), P = .002). Further research is needed to disentangle the role of genetics versus environmental, social, and structural factors contributing to poor transplantation outcomes in kidney recipients of African ancestry.


Subject(s)
Graft Rejection , Graft Survival , Kidney Transplantation , Self Report , Humans , Male , Female , Middle Aged , Graft Rejection/genetics , Graft Rejection/etiology , Graft Survival/genetics , Risk Factors , Adult , Prognosis , Follow-Up Studies , Urban Population , Black or African American/genetics , Kidney Failure, Chronic/surgery , Kidney Failure, Chronic/genetics , Transplant Recipients , Ethnicity/genetics , Neighborhood Characteristics , Glomerular Filtration Rate , Kidney Function Tests , Cohort Studies
6.
Sci Rep ; 13(1): 21866, 2023 12 10.
Article in English | MEDLINE | ID: mdl-38072966

ABSTRACT

Genome-wide association studies (GWAS) have yielded significant insights into the genetic architecture of myocardial infarction (MI), although studies in non-European populations are still lacking. Saudi Arabian cohorts offer an opportunity to discover novel genetic variants impacting disease risk due to a high rate of consanguinity. Genome-wide genotyping (GWG), imputation and GWAS followed by meta-analysis were performed based on two independent Saudi Arabian studies comprising 3950 MI patients and 2324 non-MI controls. Meta-analyses were then performed with these two Saudi MI studies and the CardioGRAMplusC4D and UK BioBank GWAS as controls. Meta-analyses of the two Saudi MI studies resulted in 17 SNPs with genome-wide significance. Meta-analyses of all 4 studies revealed 66 loci with genome-wide significance levels of p < 5 × 10-8. All of these variants, except rs2764203, have previously been reported as MI-associated loci or to have high linkage disequilibrium with known loci. One SNP association in Shisa family member 5 (SHISA5) (rs11707229) was evident at a much higher frequency in the Saudi MI populations (> 12% MAF). In conclusion, our results replicated many MI associations, whereas in Saudi-only GWAS (meta-analyses), several new loci were implicated that require future validation and functional analyses.


Subject(s)
Genome-Wide Association Study , Myocardial Infarction , Humans , Genome-Wide Association Study/methods , Saudi Arabia , Genotype , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
7.
BMC Oral Health ; 23(1): 935, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012587

ABSTRACT

BACKGROUND: Oral microbiome sequencing has revealed key links between microbiome dysfunction and dental caries. However, these efforts have largely focused on Western populations, with few studies on the Middle Eastern communities. The current study aimed to identify the composition and abundance of the oral microbiota in saliva samples of children with different caries levels using machine learning approaches. METHODS: Oral microbiota composition and abundance were identified in 250 Saudi participants with high dental caries and 150 with low dental caries using 16 S rRNA sequencing on a NextSeq 2000 SP flow cell (Illumina, CA) using 250 bp paired-end reads, and attempted to build a classifier using random forest models to assist in the early detection of caries. RESULTS: The ADONIS test results indicate that there was no significant association between sex and Bray-Curtis dissimilarity (p ~ 0.93), but there was a significant association with dental caries status (p ~ 0.001). Using an alpha level of 0.05, five differentially abundant operational taxonomic units (OTUs) were identified between males and females as the main effect along with four differentially abundant OTUs between high and low dental caries. The mean metrics for the optimal hyperparameter combination using the model with only differentially abundant OTUs were: Accuracy (0.701); Matthew's correlation coefficient (0.0509); AUC (0.517) and F1 score (0.821) while the mean metrics for random forest model using all OTUs were:0.675; 0.054; 0.611 and 0.796 respectively. CONCLUSION: The assessment of oral microbiota samples in a representative Saudi Arabian population for high and low metrics of dental caries yields signatures of abundances and diversity.


Subject(s)
Dental Caries , Microbiota , Male , Child , Female , Humans , Dental Caries/genetics , Saudi Arabia , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Saliva
8.
Lancet ; 402(10408): 1158-1169, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37598688

ABSTRACT

BACKGROUND: Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS: We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS: The data collected from xenografts suggested early signs of antibody-mediated rejection, characterised by microvascular inflammation with immune deposits, endothelial cell activation, and positive xenoreactive crossmatches. Capillary inflammation was mainly composed of intravascular CD68+ and CD15+ innate immune cells, as well as NKp46+ cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION: Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING: OrganX and MSD Avenir.


Subject(s)
Graft Rejection , Kidney , Animals , Swine , Humans , Transplantation, Heterologous , Antibodies , Immunity , Inflammation , Ischemia
9.
BMC Gastroenterol ; 23(1): 258, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507685

ABSTRACT

BACKGROUND: Crohn's diseases and ulcerative colitis, both of which are chronic immune-mediated disorders of the gastrointestinal tract are major contributors to the overarching Inflammatory bowel diseases. It has become increasingly evident that the pathological processes of IBDs results from interactions between genetic and environmental factors, which can skew immune responses against normal intestinal flora. METHODS: The aim of this study is to assess and analyze the taxa diversity and relative abundances in CD and UC in the Saudi population. We utilized a sequencing strategy that targets all variable regions in the 16 S rRNA gene using the Swift Amplicon 16 S rRNA Panel on Illumina NovaSeq 6000. RESULTS: The composition of stool 16 S rRNA was analyzed from 219 patients with inflammatory bowel disease and from 124 healthy controls. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples. At the genus level, two genera in particular, Veillonella and Lachnoclostridium showed significant association with CD versus controls. There were significant differences between subjects with CD versus UC, with the top differential genera spanning Akkermansia, Harryflintia, Maegamonas and Phascolarctobacterium. Furthermore, statistically significant taxa diversity in microbiome composition was observed within the UC and CD groups. CONCLUSIONS: In conclusion we have shown that there are significant differences in gut microbiota between UC, CD and controls in a Saudi Arabian inflammatory bowel disease cohort. This reinforces the need for further studies in large populations that are ethnically and geographically diverse. In addition, our results show the potential to develop classifiers that may have add additional richness of context to clinical diagnosis of UC and CD with larger inflammatory bowel disease cohorts.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Gastrointestinal Microbiome/genetics , Saudi Arabia , Inflammatory Bowel Diseases/microbiology , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology
10.
Nat Med ; 29(8): 1989-1997, 2023 08.
Article in English | MEDLINE | ID: mdl-37488288

ABSTRACT

Genetically modified xenografts are one of the most promising solutions to the discrepancy between the numbers of available human organs for transplantation and potential recipients. To date, a porcine heart has been implanted into only one human recipient. Here, using 10-gene-edited pigs, we transplanted porcine hearts into two brain-dead human recipients and monitored xenograft function, hemodynamics and systemic responses over the course of 66 hours. Although both xenografts demonstrated excellent cardiac function immediately after transplantation and continued to function for the duration of the study, cardiac function declined postoperatively in one case, attributed to a size mismatch between the donor pig and the recipient. For both hearts, we confirmed transgene expression and found no evidence of cellular or antibody-mediated rejection, as assessed using histology, flow cytometry and a cytotoxic crossmatch assay. Moreover, we found no evidence of zoonotic transmission from the donor pigs to the human recipients. While substantial additional work will be needed to advance this technology to human trials, these results indicate that pig-to-human heart xenotransplantation can be performed successfully without hyperacute rejection or zoonosis.


Subject(s)
Antibodies , Graft Rejection , Animals , Humans , Swine , Transplantation, Heterologous/methods , Heterografts , Heart , Animals, Genetically Modified
11.
J Neurosurg Sci ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158713

ABSTRACT

BACKGROUND: Hydrocephalus is a highly heterogeneous multifactorial disease that arises from genetic and environmental factors. Familial genetic studies of hydrocephalus have elucidated four robustly associated hydrocephalus associated loci. This study aims to identify potential genetic causation in cases of hydrocephalus, with or without spina bifida and Dandy Walker Syndrome (DWS), using family-based rare variant association analysis of whole exome sequencing. METHODS: We performed whole exome sequencing in 143 individuals across 48 families where at least one offspring was affected with hydrocephalus (N.=27), with hydrocephalus with spina bifida (N.=21) and with DWS (N.=3), using Illumina HiSeq 2500 instrument. RESULTS: No pathogenic or putative pathogenic single-nucleotide variants were evident in the four known hydrocephalus loci in our subjects. However, after examining 73 known hydrocephalus genes previously identified from literature, we identified three potentially impactful variants from the cohort. Using a gene panel comprising variants in known neural tube defects loci, we identified a total of 1024 potentially deleterious variants, of which 797 were missense variants and 191 were frameshift variants, 36 were stop gain/loss variants. A small portion of our family pedigree analyses yielded putative genetic signals which may be responsible for hydrocephaly elated phenotypes, however the low diagnostic yield may be due to lack of capture of genetic variants in the exonic regions i.e. structural variants may only be evident from whole genome sequencing. CONCLUSIONS: We identified three potentially impactful variants from our cohort in 73 known hydrocephalus genes previously identified in literature.

12.
Clin Transplant ; 37(9): e15011, 2023 09.
Article in English | MEDLINE | ID: mdl-37151104

ABSTRACT

BACKGROUND: Endomyocardial biopsy (EMB) is currently considered the gold standard for diagnosing cardiac allograft rejection. However, significant limitations related to histological interpretation variability are well-recognized. We sought to develop a methodology to evaluate EMB solely based on gene expression, without relying on histology interpretation. METHODS: Sixty-four EMBs were obtained from 47 post-heart transplant recipients, who were evaluated for allograft rejection. EMBs were subjected to mRNA sequencing, in which an unsupervised classification algorithm was used to identify the molecular signatures that best classified the EMBs. Cytokine and natriuretic peptide peripheral blood profiling was also performed. Subsequently, we performed gene network analysis to identify the gene modules and gene ontology to understand their biological relevance. We correlated our findings with the unsupervised and histological classifications. RESULTS: Our algorithm classifies EMBs into three categories based solely on clusters of gene expression: unsupervised classes 1, 2, and 3. Unsupervised and histological classifications were closely related, with stronger gene module-phenotype correlations for the unsupervised classes. Gene ontology enrichment analysis revealed processes impacting on the regulation of cardiac and mitochondrial function, immune response, and tissue injury response. Significant levels of cytokines and natriuretic peptides were detected following the unsupervised classification. CONCLUSION: We have developed an unsupervised algorithm that classifies EMBs into three distinct categories, without relying on histology interpretation. These categories were highly correlated with mitochondrial, immune, and tissue injury response. Significant cytokine and natriuretic peptide levels were detected within the unsupervised classification. If further validated, the unsupervised classification could offer a more objective EMB evaluation.


Subject(s)
Heart Transplantation , Humans , Heart Transplantation/adverse effects , Myocardium/pathology , Biopsy , Cytokines , RNA, Messenger/genetics , Graft Rejection/etiology , Graft Rejection/genetics
13.
Funct Integr Genomics ; 23(2): 102, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973604

ABSTRACT

Ischemic stroke represents a significant societal burden across the globe. Rare high penetrant monogenic variants and less pathogenic common single nucleotide polymorphisms (SNPs) have been described as being associated with risk of diseases. Genetic studies in Saudi Arabian patients offer a greater opportunity to detect rare high penetrant mutations enriched in these consanguineous populations. We performed whole exome sequencing on 387 ischemic stroke subjects from Saudi Arabian hospital networks with up to 20,230 controls from the Saudi Human Genome Project and performed gene burden analyses of variants in 177 a priori loci derived from knowledge-driven curation of monogenic and genome-wide association studies of stroke. Using gene-burden analyses, we observed significant associations in numerous loci under autosomal dominant and/or recessive modelling. Stroke subjects with modified Rankin Scale (mRSs) above 3 were found to carry greater cumulative polygenic risk score (PRS) from rare variants in stroke genes (standardized PRS mean > 0) compared to the population average (standardized PRS mean = 0). However, patients with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes (OR (95%CI) = 1.79 (1.29-2.49), p = 0.0005), with the means of standardized PRS at or lower than 0. In conclusion, gene burden testing in Saudi stroke populations reveals a number of statistically significant signals under different disease inheritance models. However, interestingly, stroke subjects with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes and therefore, determining the potential mRS cutoffs to use for clinical significance may allow risk stratification of this population.


Subject(s)
Ischemic Stroke , Stroke , Humans , Exome Sequencing , Saudi Arabia , Genome-Wide Association Study , Risk Factors , Stroke/genetics , Stroke/diagnosis , Stroke/epidemiology , Genetic Predisposition to Disease
14.
Front Mol Neurosci ; 16: 1069375, 2023.
Article in English | MEDLINE | ID: mdl-36846569

ABSTRACT

Introduction: Genome-wide association studies have discovered common polymorphisms in regions associated with schizophrenia. No genome-wide analyses have been performed in Saudi schizophrenia subjects. Methods: Genome-wide genotyping data from 136 Saudi schizophrenia cases and 97 Saudi controls in addition to 4,625 American were examined for copy number variants (CNVs). A hidden Markov model approach was used to call CNVs. Results: CNVs in schizophrenia cases were twice as large on average than CNVs in controls (p = 0.04). The analyses focused on extremely large >250 kilobases CNVs or homozygous deletions of any size. One extremely large deletion was noted in a single case (16.5 megabases on chromosome 10). Two cases had an 814 kb duplication of chromosome 7 spanning a cluster of genes, including circadian-related loci, and two other cases had 277 kb deletions of chromosome 9 encompassing an olfactory receptors gene family. CNVs were also seen in loci previously associated with schizophrenia, namely a 16p11 proximal duplication and two 22q11.2 deletions. Discussion: Runs of homozygosity (ROHs) were analyzed across the genome to investigate correlation with schizophrenia risk. While rates and sizes of these ROHs were similar in cases and controls, we identified 10 regions where multiple cases had ROHs and controls did not.

15.
J Am Heart Assoc ; 12(5): e026561, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36846987

ABSTRACT

Background Cardiometabolic diseases are highly comorbid, but their relationship with female-specific or overwhelmingly female-predominant health conditions (breast cancer, endometriosis, pregnancy complications) is understudied. This study aimed to estimate the cross-trait genetic overlap and influence of genetic burden of cardiometabolic traits on health conditions unique to women. Methods and Results Using electronic health record data from 71 008 ancestrally diverse women, we examined relationships between 23 obstetrical/gynecological conditions and 4 cardiometabolic phenotypes (body mass index, coronary artery disease, type 2 diabetes, and hypertension) by performing 4 analyses: (1) cross-trait genetic correlation analyses to compare genetic architecture, (2) polygenic risk score-based association tests to characterize shared genetic effects on disease risk, (3) Mendelian randomization for significant associations to assess cross-trait causal relationships, and (4) chronology analyses to visualize the timeline of events unique to groups of women with high and low genetic burden for cardiometabolic traits and highlight the disease prevalence in risk groups by age. We observed 27 significant associations between cardiometabolic polygenic scores and obstetrical/gynecological conditions (body mass index and endometrial cancer, body mass index and polycystic ovarian syndrome, type 2 diabetes and gestational diabetes, type 2 diabetes and polycystic ovarian syndrome). Mendelian randomization analysis provided additional evidence of independent causal effects. We also identified an inverse association between coronary artery disease and breast cancer. High cardiometabolic polygenic scores were associated with early development of polycystic ovarian syndrome and gestational hypertension. Conclusions We conclude that polygenic susceptibility to cardiometabolic traits is associated with elevated risk of certain female-specific health conditions.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Humans , Female , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/genetics , Risk Factors , Phenotype
16.
BioData Min ; 16(1): 3, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732776

ABSTRACT

BACKGROUND: Loss-of-Function (LoF) variants in human genes are important due to their impact on clinical phenotypes and frequent occurrence in the genomes of healthy individuals. The association of LoF variants with complex diseases and traits may lead to the discovery and validation of novel therapeutic targets. Current approaches predict high-confidence LoF variants without identifying the specific genes or the number of copies they affect. Moreover, there is a lack of methods for detecting knockout genes caused by compound heterozygous (CH) LoF variants. RESULTS: We have developed the Loss-of-Function ToolKit (LoFTK), which allows efficient and automated prediction of LoF variants from genotyped, imputed and sequenced genomes. LoFTK enables the identification of genes that are inactive in one or two copies and provides summary statistics for downstream analyses. LoFTK can identify CH LoF variants, which result in LoF genes with two copies lost. Using data from parents and offspring we show that 96% of CH LoF genes predicted by LoFTK in the offspring have the respective alleles donated by each parent. CONCLUSIONS: LoFTK is a command-line based tool that provides a reliable computational workflow for predicting LoF variants from genotyped and sequenced genomes, identifying genes that are inactive in 1 or 2 copies. LoFTK is an open software and is freely available to non-commercial users at https://github.com/CirculatoryHealth/LoFTK .

17.
BMC Microbiol ; 22(1): 301, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36510121

ABSTRACT

BACKGROUND: Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction and metabolic diseases such as type 2 diabetes (T2D). To date, these efforts have largely focused on Western populations, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2D participants from the Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples based on diabetes status and glucose level. RESULTS: In this study we performed the largest microbiome study ever conducted in Saudi Arabia, as well as the first-ever characterization of gut microbiota T2D versus non-T2D in this population. We observed overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated in diabetic individuals compared to non-diabetic individuals, and T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. CONCLUSION: Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool composition were perceived by differential abundance and alpha diversity measures. However, community level differences are evident in the Saudi population between T2D and non-T2D individuals, and diversity patterns appear to vary from well-characterized microbiota from Western cohorts. Comparing overlapping and varying patterns in gut microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic in the region. As a rapidly emerging chronic condition in Saudi Arabia and the Middle East, T2D burdens have grown more quickly and affect larger proportions of the population than any other global region, making a regional reference T2D-microbiome dataset critical to understanding the nuances of disease development on a global scale.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Glucose
18.
Hum Genomics ; 16(1): 71, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539902

ABSTRACT

BACKGROUND: Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia, the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity among large tribal pedigrees. RESULTS: We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known epilepsy-related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline-based variant prioritization approach in an attempt to discover putative causative variants. We identified 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity was observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. CONCLUSION: Several putative pathogenic variants in known epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci which may be prioritized for further investigation.


Subject(s)
Epilepsy , Exome , Humans , Saudi Arabia/epidemiology , Exome Sequencing , Exome/genetics , Epilepsy/epidemiology , Epilepsy/genetics , Epilepsy/diagnosis , Pedigree , Genetic Predisposition to Disease
19.
Transplant Direct ; 8(10): e1379, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36204191

ABSTRACT

Pharmacogenetic profiling of transplant recipients demonstrates that the marked variation in the metabolism of immunosuppressive medications, particularly tacrolimus, is related to genetic variants. Patients of African ancestry are less likely to carry loss-of-function (LoF) variants in the CYP3A5 gene and therefore retain a rapid metabolism phenotype and higher clearance of tacrolimus. Patients with this rapid metabolism typically require higher dosing to achieve therapeutic trough concentrations. This study aims to further characterize the impact of CYP3A5 genotype on clinical outcomes and financial expenditure. Methods: The CYP3A5 phenotype status was identified in 438 adult kidney transplant (KTx) recipients (96% were African American) using 3 LoF alleles (CYP3A5*3, *6 or *7). Individuals were categorized as rapid metabolism phenotype without LoF alleles' intermediate phenotype for 1 LoF allele' and slow phenotype for 2 LoF alleles. KTx outcomes (patient/kidney survival and Medicare spending) were determined using linked transplant registry and claims data. Results: Among the cohort, 23% had a rapid, 47% intermediate, and 30% a slow metabolism phenotype based on genotype. At 3 y, the rate of death censored graft failure and all cause graft failure was highest in the rapid metabolism phenotype and lowest in the intermediate metabolism phenotype group. First-year Medicare reimbursement differed significantly by genotype (rapid: $79 535, intermediate: $72 796, slow: $79 346, P = 0.03). After adjustment for donor and recipient characteristics, care for patients with intermediate metabolism was $4790 less expensive (P = 0.003). Conclusions: Pharmacogenomic assessment of African American KTx recipients may be useful to guide therapy when as CYP3A5 functional variants appear to be associated with differential outcome and spending after transplant.

SELECTION OF CITATIONS
SEARCH DETAIL