Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
J Exp Bot ; 74(21): 6860-6873, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37696760

ABSTRACT

MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.


Subject(s)
Aphids , Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Lipase/genetics , Lipase/metabolism , Aphids/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Mutation , Plant Diseases , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 13: 955589, 2022.
Article in English | MEDLINE | ID: mdl-35991420

ABSTRACT

The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.

3.
Sci Rep ; 12(1): 12197, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842458

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (Mpro also known as 3CLpro) is a primary drug target, due to its essential role in maturation of the viral polyproteins. In this study, we provide crystallographic evidence, along with some binding assay data, that three clinically approved anti hepatitis C virus drugs and two other drug-like compounds covalently bind to the Mpro Cys145 catalytic residue in the active site. Also, molecular docking studies can provide additional insight for the design of new antiviral inhibitors for SARS-CoV-2 using these drugs as lead compounds. One might consider derivatives of these lead compounds with higher affinity to the Mpro as potential COVID-19 therapeutics for further testing and possibly clinical trials.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Hepacivirus/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
5.
Front Plant Sci ; 12: 708902, 2021.
Article in English | MEDLINE | ID: mdl-34456949

ABSTRACT

Photosynthetically derived sugars provide carbon skeletons for metabolism and carbon signals that favor anabolism. The amount of sugar available for fatty acid (FA) and triacylglycerol (TAG) synthesis depends on sugar compartmentation, transport, and demands from competing pathways. We are exploring the influence of sugar partitioning between the vacuole and cytoplasm on FA synthesis in Arabidopsis by building on our previous finding that reduced leaf sugar export in the sucrose-proton symporter2 (suc2) mutant, in combination with impaired starch synthesis in the ADP-glucose pyrophosphorylase (adg1) mutant, accumulates higher sugar levels and increased total FA and TAG compared to the wild type parent. Here we sought to relocalize sugar from the vacuole to the cytoplasm to drive additional FA/TAG synthesis and growth. Arabidopsis suc2 adg1 was therefore crossed with tonoplast monosaccharide transporter mutants tmt1 and tmt2 and overexpression of the sucrose/proton cotransporter SUC4 in which tmt1 tmt2 impairs sugar transport to the vacuole from the cytoplasm and SUC4 overexpression enhances sugar transport in the reverse direction from the vacuole to the cytoplasm. A resulting homozygous suc2 adg1 tmt1 tmt2 SUC4 line was used to test the hypothesis that increased intracellular carbon supply in the form of sugars would increase both FA and TAG accumulation. The data shows that relative to suc2 adg1, suc2 adg1 tmt1 tmt2 SUC4 significantly increases leaf total FA content by 1.29-fold to 10.9% of dry weight and TAG by 2.4-fold to 2.88%, supporting the hypothesis that mobilizing vacuolar sugar is a valid strategy for increasing vegetative oil accumulation.

6.
Front Plant Sci ; 12: 643843, 2021.
Article in English | MEDLINE | ID: mdl-33828577

ABSTRACT

Photosynthates such as glucose, sucrose, and some of their derivatives play dual roles as metabolic intermediates and signaling molecules that influence plant cell metabolism. Such sugars provide substrates for de novo fatty acid (FA) biosynthesis. However, compared with the well-defined examples of sugar signaling in starch and anthocyanin synthesis, until recently relatively little was known about the role of signaling in regulating FA and lipid biosynthesis. Recent research progress shows that trehalose 6-phosphate and 2-oxoglutarate (2-OG) play direct signaling roles in the regulation of FA biosynthesis by modulating transcription factor stability and enzymatic activities involved in FA biosynthesis. Specifically, mechanistic links between sucrose non-fermenting-1-related protein kinase 1 (SnRK1)-mediated trehalose 6-phosphate (T6P) sensing and its regulation by phosphorylation of WRI1 stability, diacylglycerol acyltransferase 1 (DGAT1) enzyme activity, and of 2-OG-mediated relief of inhibition of acetyl-CoA carboxylase (ACCase) activity by protein PII are exemplified in detail in this review.

7.
Plant Physiol ; 185(3): 892-901, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793910

ABSTRACT

Hundreds of naturally occurring specialized fatty acids (FAs) have potential as desirable chemical feedstocks if they could be produced at large scale by crop plants; however, transgenic expression of their biosynthetic genes has generally been accompanied by dramatic reductions in oil yield. For example, expression of castor (Ricinus communis) FA hydroxylase (FAH) in the Arabidopsis thaliana FA elongation mutant fae1 resulted in a 50% reduction of FA synthesis rate that was attributed to inhibition of acetyl-CoA carboxylase (ACCase) by an undefined mechanism. Here, we tested the hypothesis that the ricinoleic acid-dependent decrease in ACCase activity is mediated by biotin attachment domain-containing (BADC) proteins. BADCs are inactive homologs of biotin carboxy carrier protein that lack a biotin cofactor and can inhibit ACCase. Arabidopsis contains three BADC genes. To reduce expression levels of BADC1 and BADC3 in fae1/FAH plants, a homozygous badc1,3/fae1/FAH line was created. The rate of FA synthesis in badc1,3/fae1/FAH seeds doubled relative to fae1/FAH, restoring it to fae1 levels, increasing both native FA and HFA accumulation. Total FA per seed, seed oil content, and seed yield per plant all increased in badc1,3/fae1/FAH, to 5.8 µg, 37%, and 162 mg, respectively, relative to 4.9 µg, 33%, and 126 mg, respectively, for fae1/FAH. Transcript levels of FA synthesis-related genes, including those encoding ACCase subunits, did not significantly differ between badc1,3/fae1/FAH and fae1/FAH. These results demonstrate that BADC1 and BADC3 mediate ricinoleic acid-dependent inhibition of FA synthesis. We propose that BADC-mediated FAS inhibition as a general mechanism that limits FA accumulation in specialized FA-accumulating seeds.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Biotin/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant
8.
Front Plant Sci ; 12: 656962, 2021.
Article in English | MEDLINE | ID: mdl-33777087

ABSTRACT

We previously demonstrated that exogenous trehalose 6-phosphate (T6P) treatment stabilized WRINKLED1 (WRI1), a master transcriptional regulator of fatty acid (FA) synthesis and increased total FA content in Brassica napus (B. napus) embryo suspension cell culture. Here, we explore Arabidopsis lines heterologously expressing the Escherichia coli T6P synthase (otsA) or T6P phosphatase (otsB) to refine our understanding regarding the role of T6P in regulating fatty acid synthesis both in seeds and vegetative tissues. Arabidopsis 35S:otsA transgenic seeds showed an increase of 13% in fatty acid content compared to those of wild type (WT), while seeds of 35:otsB transgenic seeds showed a reduction of 12% in fatty acid content compared to WT. Expression of otsB significantly reduced the level of WRI1 and expression of its target genes in developing seeds. Like Arabidopsis seeds constitutively expressing otsA, transient expression of otsA in Nicotiana benthamiana leaves resulted in strongly elevated levels of T6P. This was accompanied by an increase of 29% in de novo fatty acid synthesis rate, a 2.3-fold increase in triacylglycerol (TAG) and a 20% increase in total fatty acid content relative to empty vector (EV) controls. Taken together, these data support the heterologous expression of otsA as an approach to increasing TAG accumulation in plant seeds and vegetative tissues.

9.
Plant Physiol ; 184(1): 459-477, 2020 09.
Article in English | MEDLINE | ID: mdl-32665332

ABSTRACT

In animals, several long-chain N-acylethanolamines (NAEs) have been identified as endocannabinoids and are autocrine signals that operate through cell surface G-protein-coupled cannabinoid receptors. Despite the occurrence of NAEs in land plants, including nonvascular plants, their precise signaling properties and molecular targets are not well defined. Here we show that the activity of N-linolenoylethanolamine (NAE 18:3) requires an intact G-protein complex. Specifically, genetic ablation of the Gßγ dimer or loss of the full set of atypical Gα subunits strongly attenuates an NAE-18:3-induced degreening of cotyledons in Arabidopsis (Arabidopsis thaliana) seedlings. This effect involves, at least in part, transcriptional regulation of chlorophyll biosynthesis and catabolism genes. In addition, there is feedforward transcriptional control of G-protein signaling components and G-protein interactors. These results are consistent with NAE 18:3 being a lipid signaling molecule in plants with a requirement for G-proteins to mediate signal transduction, a situation similar, but not identical, to the action of NAE endocannabinoids in animal systems.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Seedlings/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Seedlings/genetics , Signal Transduction/genetics , Signal Transduction/physiology
10.
Plant Physiol ; 182(2): 730-738, 2020 02.
Article in English | MEDLINE | ID: mdl-31806737

ABSTRACT

In previous work, we identified a triple mutant of the castor (Ricinus communis) stearoyl-Acyl Carrier Protein desaturase (T117R/G188L/D280K) that, in addition to introducing a double bond into stearate to produce oleate, performed an additional round of oxidation to convert oleate to a trans allylic alcohol acid. To determine the contributions of each mutation, in this work we generated individual castor desaturase mutants carrying residue changes corresponding to those in the triple mutant and investigated their catalytic activities. We observed that T117R, and to a lesser extent D280K, accumulated a novel product, namely erythro-9,10-dihydroxystearate, that we identified via its methyl ester through gas chromatography-mass spectrometry and comparison with authentic standards. The use of 18O2 labeling showed that the oxygens of both hydroxyl moieties originate from molecular oxygen rather than water. Incubation with an equimolar mixture of 18O2 and 16O2 demonstrated that both hydroxyl oxygens originate from a single molecule of O2, proving the product is the result of dioxygenase catalysis. Using prolonged incubation, we discovered that wild-type castor desaturase is also capable of forming erythro-9,10-dihydroxystearate, which presents a likely explanation for its accumulation to ∼0.7% in castor oil, the biosynthetic origin of which had remained enigmatic for decades. In summary, the findings presented here expand the documented constellation of di-iron enzyme catalysis to include a dioxygenase reactivity in which an unactivated alkene is converted to a vicinal diol.


Subject(s)
Dioxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Ricinus/enzymology , Stearic Acids/metabolism , Castor Oil/chemistry , Catalysis , Dioxygenases/chemistry , Gas Chromatography-Mass Spectrometry , Mixed Function Oxygenases/chemistry , Mutation , Oleic Acid/chemistry , Oleic Acid/metabolism , Oxidation-Reduction , Oxygen/metabolism , Propanols/metabolism , Ricinus/genetics , Ricinus/metabolism , Stearic Acids/chemistry
11.
Plant Physiol ; 181(1): 55-62, 2019 09.
Article in English | MEDLINE | ID: mdl-31209126

ABSTRACT

WRINKLED1 (WRI1) is a transcriptional activator that binds to a conserved sequence (designated as AW box) boxes in the promoters of many genes from central metabolism and fatty acid (FA) synthesis, resulting in their transcription. BIOTIN ATTACHMENT DOMAIN-CONTAINING (BADC) proteins lack a biotin-attachment domain and are therefore inactive, but in the presence of excess FA, BADC1 and BADC3 are primarily responsible for the observed long-term irreversible inhibition of ACETYL-COA CARBOXYLASE, and consequently FA synthesis. Here, we tested the interaction of WRI1 with BADC genes in Arabidopsis (Arabidopsis thaliana) and found purified WRI1 bound with high affinity to canonical AW boxes from the promoters of all three BADC genes. Consistent with this observation, both expression of BADC1, BADC2, and BADC3 genes and BADC1 protein levels were reduced in wri1-1 relative to the wild type, and elevated upon WRI1 overexpression. The double mutant badc1 badc2 phenocopied wri1-1 with respect to both reduction in root length and elevation of indole-3-acetic acid-Asp levels relative to the wild type. Overexpression of BADC1 in wri1-1 decreased indole-3-acetic acid-Asp content and partially rescued its short-root phenotype, demonstrating a role for BADCs in seedling establishment. That WRI1 positively regulates genes encoding both FA synthesis and BADC proteins (i.e. conditional inhibitors of FA synthesis), represents a coordinated mechanism to achieve lipid homeostasis in which plants couple the transcription of their FA synthetic capacity with their capacity to biochemically downregulate it.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Biotin/metabolism , Fatty Acids/antagonists & inhibitors , Transcription Factors/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Conserved Sequence , Fatty Acids/metabolism , Promoter Regions, Genetic/genetics , Protein Domains , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Transcription Factors/genetics
12.
Plant Cell ; 30(10): 2616-2627, 2018 10.
Article in English | MEDLINE | ID: mdl-30249634

ABSTRACT

WRINKLED1 (WRI1), the transcriptional activator of fatty acid synthesis, was recently identified as a target of KIN10, a catalytic α-subunit of the SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1). We tested the hypothesis that trehalose 6-phosphate (T6P), a signal of cellular sucrose status, can regulate fatty acid synthesis by inhibiting SnRK1. Incubation of Brassica napus suspension cells in medium containing T6P, or overexpression of the Escherichia coli T6P synthase, OtsA, in Nicotiana benthamiana, significantly increased T6P levels, WRI1 levels, and fatty acid synthesis rates. T6P directly bound to purified recombinant KIN10 with an equilibrium dissociation constant (K d) of 32 ± 6 µM based on microscale thermophoresis. GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1) bound to KIN10 (K d 19 ± 3 µM) and activated it by phosphorylation. In the presence of T6P, the GRIK1-KIN10 association was weakened by more than 3-fold (K d 68 ± 9.8 µM), which reduced both the phosphorylation of KIN10 and its activity. T6P-dependent inhibition of SnRK1 activity was reduced in extracts of individual Arabidopsis thaliana grik1 and grik2 mutants relative to the wild type, while SnRK1 activity in grik1 grik2 extracts was enhanced by T6P. These results indicate that the T6P sensitivity of SnRK1 in vivo is GRIK1/GRIK2 dependent. Based on our findings, we propose a mechanistic model that links sugar signaling and fatty acid homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassica napus/metabolism , Fatty Acids/biosynthesis , Sugar Phosphates/metabolism , Transcription Factors/metabolism , Trehalose/analogs & derivatives , Arabidopsis/genetics , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Brassica napus/cytology , Brassica napus/drug effects , Cell Culture Techniques , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Mutation , Phosphorylation , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sugar Phosphates/pharmacology , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/genetics , Trehalose/metabolism , Trehalose/pharmacology
13.
Plant Physiol ; 177(1): 208-215, 2018 05.
Article in English | MEDLINE | ID: mdl-29626162

ABSTRACT

The first committed step in fatty acid synthesis is mediated by acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback regulated by short-term or long-term exposure to fatty acids in the form of Tween 80 (predominantly containing oleic acid), which results in reversible or irreversible ACCase inhibition, respectively. Biotin attachment domain-containing (BADC) proteins are inactive analogs of biotin carboxyl transfer proteins that lack biotin, and their incorporation into ACCase down-regulates its activity by displacing active (biotin-containing) biotin carboxyltransferase protein subunits. Arabidopsis (Arabidopsis thaliana) lines containing T-DNA insertions in BADC1, BADC2, and BADC3 were used to generate badc1 badc2 and badc1 badc3 double mutants. The badc1 badc3 mutant exhibited normal growth and development; however, ACCase activity was 26% higher in badc1 badc3 and its seeds contained 30.1% more fatty acids and 32.6% more triacylgycerol relative to wild-type plants. To assess whether BADC contributes to the irreversible phase of ACCase inhibition, cell suspension cultures were generated from the leaves of badc1 badc3 and wild-type plants and treated with 10 mm Tween 80. Reversible ACCase inhibition was similar in badc1 badc3 and wild-type cultures after 2 d of Tween 80 treatment, but irreversible inhibition was reduced by 50% in badc1 badc3 relative to wild-type plants following 4 d of Tween 80 treatment. In this study, we present evidence for two important homeostatic roles for BADC proteins in down-regulating ACCase activity: by acting during normal growth and development and by contributing to its long-term irreversible feedback inhibition resulting from the oversupply of fatty acids.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Acetates/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biotin/metabolism , Cell Culture Techniques/methods , Fatty Acids/metabolism , Gene Expression Regulation, Plant/drug effects , Mutation , Plant Leaves/genetics , Plant Leaves/metabolism , Polysorbates/pharmacology , Protein Domains , Seeds/genetics , Seeds/metabolism , Triglycerides/genetics , Triglycerides/metabolism
14.
J Therm Biol ; 68(Pt A): 45-54, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28689720

ABSTRACT

We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes.


Subject(s)
Acclimatization , Alligators and Crocodiles/physiology , Temperature , Alligators and Crocodiles/growth & development , Alligators and Crocodiles/metabolism , Animals , Cell Membrane/chemistry , Cold Temperature , Mitochondria/physiology , Oxidative Phosphorylation
15.
Lipids ; 51(7): 857-66, 2016 07.
Article in English | MEDLINE | ID: mdl-27221132

ABSTRACT

Neurons are especially susceptible to oxidative damage, which is increasingly implicated in neurodegenerative disease. Certain N-acylethanolamines (NAEs) have been shown to protect neurons from oxidative stress. Since glaucoma may be considered a neurodegenerative disorder and the survival of retinal neurons could also be influenced by N-acylethanolamines, our goal was to quantify changes in certain N-acylethanolamine species and their oxylipin derivatives in the retina of a mouse model for glaucoma. We also sought to identify relationships between these and parameters of glaucoma disease development, specifically intraocular pressure, visual acuity, and contrast sensitivity. Five N-acylethanolamine species and three NAE oxylipin derivatives were quantified in retina from young and aged DBA/2Crl mice. N-Acylethanolamines and NAE-oxylipins in retinal extracts were quantified against deuterated standards by isotope dilution gas chromatography-mass spectrometry. Levels (nmol/g dry weight) of N-arachidonoylethanolamine (anandamide; NAE 20:4) were significantly (p = 0.008) decreased in aged (2.875 ± 0.6702) compared to young animals (5.175 ± 0.971). Conversely, the anandamide oxylipin, 15(S)-HETE ethanolamide (15(S)-HETE EA), was significantly (p = 0.042) increased in aged (0.063 ± 0.009) compared to young animals (0.039 ± 0.011). Enzymatic depletion of the anandamide pool by 15-lipoxygenase and consequent accumulation of 15(S)-HETE ethanolamine may contribute to decreased visual function in glaucomatous mice. Since N-acylethanolamines effectively attenuate glaucoma pathogenesis and associated visual impairment, our data provides additional rationale and novel targets for glaucoma therapies.


Subject(s)
Ethanolamines/analysis , Glaucoma/physiopathology , Oxylipins/analysis , Retina/physiopathology , Age Factors , Animals , Disease Models, Animal , Ethanolamines/metabolism , Gas Chromatography-Mass Spectrometry , Glaucoma/metabolism , Intraocular Pressure , Mice , Oxylipins/metabolism , Retina/metabolism , Visual Acuity
16.
Neural Plast ; 2016: 2426398, 2016.
Article in English | MEDLINE | ID: mdl-26839710

ABSTRACT

The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.


Subject(s)
Endocannabinoids/metabolism , Mass Spectrometry/methods , Receptors, Cannabinoid/metabolism , Signal Transduction/physiology , Animals
17.
Mol Plant Microbe Interact ; 28(10): 1142-52, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26075826

ABSTRACT

Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.


Subject(s)
Arabidopsis/enzymology , Fusarium/physiology , Lipoxygenases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Triticum/enzymology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Base Sequence , Cyclopentanes/metabolism , Disease Resistance , Gene Knockdown Techniques , Genes, Reporter , Lipoxygenases/metabolism , Molecular Sequence Data , Mutation , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Salicylic Acid/metabolism , Sequence Analysis, DNA , Signal Transduction , Triticum/genetics , Triticum/immunology , Triticum/microbiology
18.
Plant J ; 82(2): 315-27, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25752187

ABSTRACT

Ethanolamide-conjugated fatty acid derivatives, also known as N-acylethanolamines (NAEs), occur at low levels (µg per g) in desiccated seeds, and endogenous amounts decline rapidly with seedling growth. Linoleoylethanolamide (NAE18:2) is the most abundant of these NAEs in seeds of almost all plants, including Arabidopsis thaliana. In Arabidopsis, NAE18:2 may be oxidized by lipoxygenase (LOX) or hydrolyzed by fatty acid amide hydrolase (FAAH) during normal seedling establishment, and this contributes to the normal progression of NAE depletion that is coincident with the depletion of abscisic acid (ABA). Here we provide biochemical, genetic and pharmacological evidence that a specific 9-LOX metabolite of NAE18:2 [9-hydro(pero)xy linoleoylethanolamide (9-NAE-H(P)OD)] has a potent negative influence on seedling root elongation, and acts synergistically with ABA to modulate the transition from embryo to seedling growth. Genetic analyses using mutants in ABA synthesis (aba1 and aba2), perception (pyr1, pyl1, pyl2, pyl4, pyl5 and pyl8) or transcriptional activation (abi3-1) indicated that arrest of root growth by 9-NAE-H(P)OD requires an intact ABA signaling pathway, and probably operates to increase ABA synthesis as part of a positive feedback loop to modulate seedling establishment in response to adverse environmental conditions. These results identify a specific, bioactive ethanolamide oxylipin metabolite of NAE18:2, different from those of ethanolamide-conjugated linolenic acid (NAE18:3), as well as a molecular explanation for its inhibitory action, emphasizing the oxidative metabolism of NAEs as an important feature of seedling development.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Linoleic Acids/chemistry , Linoleic Acids/metabolism , Lipoxygenase/metabolism , Plant Roots/metabolism , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/metabolism , Seedlings/metabolism , Signal Transduction , Gene Expression Regulation, Plant
19.
Plant Signal Behav ; 9(2): e27723, 2014.
Article in English | MEDLINE | ID: mdl-24492485

ABSTRACT

Comparative Gene Identification-58 (CGI-58) is an α/ß hydrolase-type protein that regulates lipid homeostasis and signaling in eukaryotes by interacting with and stimulating the activity of several different types of proteins, including a lipase in mammalian cells and a peroxisomal ABC transporter (PXA1) in plant cells. Here we show that plant CGI-58 also interacts with spermidine synthase 1 (SPDS1), an enzyme that plays a central role in polyamine metabolism by converting putrescine into spermidine. Analysis of polyamine contents in Arabidopsis thaliana plants revealed that spermidine levels were significantly reduced, and putrescine increased, in both cgi-58 and cgi-58/pxa1 mutant plants, relative to pxa1 mutant or wild-type plants. Evaluation of polyamine-related gene expression levels, however, revealed similar increases in transcript abundance in all mutants, including cgi-58, pxa1, and cgi-58/pxa1, in comparison to wild type. Taken together, the data support a model whereby CGI-58 and PXA1 contribute to the regulation of polyamine metabolism at the transcriptional level, perhaps through a shared lipid-signaling pathway, and that CGI-58 also acts independently of PXA1 to increase spermidine content at a post-transcriptional level, possibly through protein-protein interaction with SPDS1.


Subject(s)
Acyltransferases/metabolism , Arabidopsis/metabolism , Homeostasis , Lipid Metabolism , Polyamines/metabolism , Signal Transduction , ATP-Binding Cassette Transporters/metabolism , Acyltransferases/genetics , Adenosine Triphosphatases , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Mutation/genetics , Spermidine Synthase
20.
Plant J ; 79(4): 568-83, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24397856

ABSTRACT

Twenty years ago, N-acylethanolamines (NAEs) were considered by many lipid chemists to be biological 'artifacts' of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N-arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross-kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.


Subject(s)
Ethanolamines/metabolism , Plant Development , Plants/metabolism , Abscisic Acid/metabolism , Amidohydrolases/metabolism , Lipid Metabolism , Lipoxygenase/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL