Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
G3 (Bethesda) ; 12(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35137016

ABSTRACT

Coccidioidomycosis is a common fungal disease that is endemic to arid and semi-arid regions of both American continents. Coccidioides immitis and Coccidioides posadasii are the etiological agents of the disease, also known as Valley Fever. For several decades, the C. posadasii strain Silveira has been used widely in vaccine studies, is the source strain for production of diagnostic antigens, and is a widely used experimental strain for functional studies. In 2009, the genome was sequenced using Sanger sequencing technology, and a draft assembly and annotation were made available. In this study, the genome of the Silveira strain was sequenced using single molecule real-time sequencing PacBio technology, assembled into chromosomal-level contigs, genotyped, and the genome was reannotated using sophisticated and curated in silico tools. This high-quality genome sequencing effort has improved our understanding of chromosomal structure, gene set annotation, and lays the groundwork for identification of structural variants (e.g. transversions, translocations, and copy number variants), assessment of gene gain and loss, and comparison of transposable elements in future phylogenetic and population genomics studies.


Subject(s)
Coccidioides , Coccidioidomycosis , Base Sequence , Coccidioides/genetics , Coccidioidomycosis/diagnosis , Coccidioidomycosis/epidemiology , Coccidioidomycosis/genetics , Humans , Phylogeny
2.
BMC Microbiol ; 21(1): 17, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413126

ABSTRACT

BACKGROUND: Leptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. To address this, we screened for Leptospira DNA in two rivers in rural Ecuador where Leptospirosis is endemic. RESULTS: We collected 112 longitudinal samples and recorded pH, temperature, river depth, precipitation, and dissolved oxygen. We also performed a series of three experiments designed to provide insight into Leptospira presence in the soil. In the first soil experiment, we characterized prevalence and co-occurrence of Leptospira with other bacterial taxa in the soil at dispersed sites along the rivers (n = 64). In the second soil experiment, we collected 24 river samples and 48 soil samples at three points along eight transects to compare the likelihood of finding Leptospira in the river and on the shore at different distances from the river. In a third experiment, we tested whether Leptospira presence is associated with soil moisture by collecting 25 soil samples from two different sites. In our river experiment, we found pathogenic Leptospira in only 4 (3.7%) of samples. In contrast, pathogenic Leptospira species were found in 22% of shore soil at dispersed sites, 16.7% of soil samples (compared to 4.2% of river samples) in the transects, and 40% of soil samples to test for associations with soil moisture. CONCLUSIONS: Our data are limited to two sites in a highly endemic area, but the scarcity of Leptospira DNA in the river is not consistent with the widespread contention of the importance of river water for leptospirosis transmission. While Leptospira may be shed directly into the river, onto the shores, or washed into the river from more remote sites, massive dilution and limited persistence in rivers may reduce the environmental load and therefore, the epidemiological significance of such sources. It is also possible that transmission may occur more frequently on shores where people are liable to be barefoot. Molecular studies that further explore the role of rivers and water bodies in the epidemiology of leptospirosis are needed.


Subject(s)
Leptospira/classification , Leptospirosis/epidemiology , Rivers/microbiology , Sequence Analysis, DNA/methods , Soil/chemistry , Animals , DNA, Bacterial , DNA, Ribosomal/genetics , Ecuador , Endemic Diseases , Humans , Leptospira/genetics , Leptospira/isolation & purification , Phylogeny , Prevalence , RNA, Ribosomal, 16S/genetics , Rural Population , Soil Microbiology
3.
Genome Biol Evol ; 12(3): 229-242, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32108238

ABSTRACT

Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.


Subject(s)
Botulinum Toxins/genetics , Clostridium/genetics , Africa , Argentina , Australia , Botulinum Toxins/biosynthesis , Clostridium/classification , Clostridium/metabolism , Genome, Bacterial , Genomics , Phylogeny
4.
Fungal Genet Biol ; 138: 103351, 2020 05.
Article in English | MEDLINE | ID: mdl-32028048

ABSTRACT

Modern genome analysis and phylogenomic methods have increased the number of fungal species, as well as enhanced appreciation of the degree of diversity within the fungal kingdom. In this context, we describe a new Parengyodontium species, P. americanum, which is phylogenetically related to the opportunistic human fungal pathogen P. album. Five unusual fungal isolates were recovered from five unique and confirmed coccidioidomycosis patients, and these isolates were subsequently submitted to detailed molecular and morphological identification procedures to determine identity. Molecular and morphological diagnostic analyses showed that the isolates belong to the Cordycipitaceae. Subsequently, three representative genomes were sequenced and annotated, and a new species, P. americanum, was identified. Using various genomic analyses, gene family expansions related to novel compounds and potential for ability to grow in diverse habitats are predicted. A general description of the genomic composition of this newly described species and comparison of genome content with Beauveria bassiana, Isaria fumosorosea and Cordyceps militaris shows a shared core genome of 6371 genes, and 148 genes that appear to be specific for P. americanum. This work provides the framework for future investigations of this interesting fungal species.


Subject(s)
Coccidioidomycosis/microbiology , Hypocreales , Beauveria/genetics , Cordyceps/genetics , Fungal Proteins/genetics , Genome, Fungal , Humans , Hypocreales/classification , Hypocreales/cytology , Hypocreales/genetics , Hypocreales/isolation & purification , Opportunistic Infections/microbiology , Phylogeny , Proteomics
5.
mBio ; 10(6)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772050

ABSTRACT

Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions.IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.


Subject(s)
Coccidioides/genetics , Coccidioidomycosis/microbiology , Genetic Variation , Coccidioides/classification , Coccidioides/isolation & purification , Coccidioidomycosis/epidemiology , Humans , North America/epidemiology , Phylogeny , South America/epidemiology , Venezuela/epidemiology
6.
PLoS Negl Trop Dis ; 13(9): e0007727, 2019 09.
Article in English | MEDLINE | ID: mdl-31487287

ABSTRACT

BACKGROUND: Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The global burden and distribution of melioidosis is poorly understood, including in the Caribbean. B. pseudomallei was previously isolated from humans and soil in eastern Puerto Rico but the abundance and distribution of B. pseudomallei in Puerto Rico as a whole has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected 600 environmental samples (500 soil and 100 water) from 60 sites around Puerto Rico. We identified B. pseudomallei by isolating it via culturing and/or using PCR to detect its DNA within complex DNA extracts. Only three adjacent soil samples from one site were positive for B. pseudomallei with PCR; we obtained 55 isolates from two of these samples. The 55 B. pseudomallei isolates exhibited fine-scale variation in the core genome and contained four novel genomic islands. Phylogenetic analyses grouped Puerto Rico B. pseudomallei isolates into a monophyletic clade containing other Caribbean isolates, which was nested inside a larger clade containing all isolates from Central/South America. Other Burkholderia species were commonly observed in Puerto Rico; we cultured 129 isolates from multiple soil and water samples collected at numerous sites around Puerto Rico, including representatives of B. anthina, B. cenocepacia, B. cepacia, B. contaminans, B. glumae, B. seminalis, B. stagnalis, B. ubonensis, and several unidentified novel Burkholderia spp. CONCLUSIONS/SIGNIFICANCE: B. pseudomallei was only detected in three soil samples collected at one site in north central Puerto Rico with only two of those samples yielding isolates. All previous human and environmental B. pseudomallei isolates were obtained from eastern Puerto Rico. These findings suggest B. pseudomallei is ecologically established and widely dispersed in the environment in Puerto Rico but rare. Phylogeographic patterns suggest the source of B. pseudomallei populations in Puerto Rico and elsewhere in the Caribbean may have been Central or South America.


Subject(s)
Burkholderia pseudomallei/isolation & purification , Burkholderia/classification , Burkholderia/isolation & purification , Burkholderia pseudomallei/genetics , Genomic Islands , Melioidosis , Phylogeny , Polymerase Chain Reaction/methods , Puerto Rico , Sequence Analysis, DNA , Soil Microbiology , Water Microbiology
7.
PLoS One ; 14(1): e0209478, 2019.
Article in English | MEDLINE | ID: mdl-30625164

ABSTRACT

Yersinia pestis was introduced to Brazil during the third plague pandemic and currently exists in several recognized foci. There is currently limited available phylogeographic data regarding Y. pestis in Brazil. We generated whole genome sequences for 411 Y. pestis strains from six Brazilian foci to investigate the phylogeography of Y. pestis in Brazil; these strains were isolated from 1966 to 1997. All 411 strains were assigned to a single monophyletic clade within the 1.ORI population, indicating a single Y. pestis introduction was responsible for the successful establishment of endemic foci in Brazil. There was a moderate level of genomic diversity but little population structure among the 411 Brazilian Y. pestis strains, consistent with a radial expansion wherein Y. pestis spread rapidly from the coast to the interior of Brazil and became ecologically established. Overall, there were no strong spatial or temporal patterns among the Brazilian strains. However, strains from the same focus tended to be more closely related and strains isolated from foci closer to the coast tended to fall in more basal positions in the whole genome phylogeny than strains from more interior foci. Overall, the patterns observed in Brazil are similar to other locations affected during the 3rd plague pandemic such as in North America and Madagascar.


Subject(s)
Pandemics/history , Plague/history , Yersinia pestis/genetics , Brazil/epidemiology , DNA, Bacterial/genetics , Genetic Variation , Genome, Bacterial , History, 19th Century , History, 20th Century , Humans , Phylogeny , Phylogeography , Plague/epidemiology , Plague/microbiology , Polymorphism, Single Nucleotide , Spatio-Temporal Analysis , Yersinia pestis/classification , Yersinia pestis/isolation & purification
8.
MBio, v. 10, n. 6, p. e01976-19, nov. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2876

ABSTRACT

Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions. IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii. These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.

9.
PLoS Negl Trop Dis ; 11(9): e0005928, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28910350

ABSTRACT

The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 µg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia/classification , Burkholderia/drug effects , Environmental Microbiology , Genetic Variation , Phylogeography , Thienamycins/pharmacology , Animals , Australia , Burkholderia/genetics , Burkholderia/isolation & purification , Burkholderia Infections/microbiology , Burkholderia Infections/pathology , Disease Models, Animal , Genotype , Meropenem , Mice, Inbred BALB C , Multilocus Sequence Typing , O Antigens/genetics , Papua New Guinea , Puerto Rico , Thailand , Virulence
10.
BMC Res Notes ; 10(1): 71, 2017 Jan 28.
Article in English | MEDLINE | ID: mdl-28129788

ABSTRACT

BACKGROUND: Leptospirosis is a major zoonotic disease with widespread distribution and a large impact on human health. Carrier animals excrete pathogenic Leptospira primarily in their urine. Infection occurs when the pathogen enters a host through mucosa or small skin abrasions. Humans and other animals are exposed to the pathogen by direct contact with urine, contaminated soil or water. While many factors influence environmental cycling and the transmission of Leptospira to humans, the load of pathogenic Leptospira in the environment is likely to play a major role. Peridomestic rats are often implicated as a potential source of human disease; however exposure to other animals is a risk factor as well. The aim of this report is to highlight the importance of various carrier animals in terms of the quantity of Leptospira shed into the environment. For this, we performed a systematic literature review and a meta-analysis of the amount of pathogen that various animal species shed in their urine. RESULTS: The quantity of pathogen has been reported for cows, deer, dogs, humans, mice, and rats, in a total of 14 research articles. We estimated the average Leptospira per unit volume shed by each animal species, and the daily environmental contribution by considering the total volume of urine excreted by each carrier animal. Rats excrete the highest quantity of Leptospira per millilitre of urine (median = 5.7 × 106 cells), but large mammals excrete much more urine and thus shed significantly more Leptospira per day (5.1 × 108 to 1.3 × 109 cells). CONCLUSIONS: Here we illustrate how, in a low-income rural Ecuadorian community, host population demographics, and prevalence of Leptospira infection can be integrated with estimates of shed Leptospira to suggest that peridomestic cattle may be more important than rats in environmental cycling and ultimately, transmission to humans.


Subject(s)
Leptospira/isolation & purification , Leptospirosis/epidemiology , Poverty/statistics & numerical data , Rural Population/statistics & numerical data , Zoonoses/epidemiology , Animals , Cattle , Deer , Dogs , Ecuador , Humans , Mice , Rats
11.
PLoS Negl Trop Dis ; 10(9): e0004990, 2016 09.
Article in English | MEDLINE | ID: mdl-27622673

ABSTRACT

BACKGROUND: Leptospirosis is a zoonotic disease responsible for high morbidity around the world, especially in tropical and low income countries. Rats are thought to be the main vector of human leptospirosis in urban settings. However, differences between urban and low-income rural communities provide additional insights into the epidemiology of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Our study was conducted in two low-income rural communities near the coast of Ecuador. We detected and characterized infectious leptospira DNA in a wide variety of samples using new real time quantitative PCR assays and amplicon sequencing. We detected infectious leptospira in a high percentage of febrile patients (14.7%). In contrast to previous studies on leptospirosis risk factors, higher positivity was not found in rats (3.0%) but rather in cows (35.8%) and pigs (21.1%). Six leptospira species were identified (L. borgpetersenii, L kirschnerii, L santarosai, L. interrogans, L noguchii, and an intermediate species within the L. licerasiae and L. wolffii clade) and no significant differences in the species of leptospira present in each animal species was detected (χ2 = 9.89, adj.p-value = 0.27). CONCLUSIONS/SIGNIFICANCE: A large portion of the world's human population lives in low-income, rural communities, however, there is limited information about leptospirosis transmission dynamics in these settings. In these areas, exposure to peridomestic livestock is particularly common and high prevalence of infectious leptospira in cows and pigs suggest that they may be the most important reservoir for human transmission. Genotyping clinical samples show that multiple species of leptospira are involved in human disease. As these genotypes were also detected in samples from a variety of animals, genotype data must be used in conjunction with epidemiological data to provide evidence of transmission and the importance of different potential leptospirosis reservoirs.


Subject(s)
Leptospira/classification , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/transmission , Zoonoses/epidemiology , Animals , Cattle , Disease Reservoirs/microbiology , Ecuador/epidemiology , Genotype , Humans , Livestock/microbiology , Phylogeny , Poverty , Rats , Regression Analysis , Rural Population , Sequence Analysis, DNA , Swine , Zoonoses/microbiology
12.
mBio ; 7(2): e00550-16, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27118594

ABSTRACT

UNLABELLED: Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. IMPORTANCE: Coccidioidomycosis, or valley fever, is caused by the pathogenic fungi Coccidioides posadasii and C. immitis The fungal species and disease are primarily found in the American desert southwest, with spotted distribution throughout the Western Hemisphere. Initial molecular studies suggested a likely anthropogenic movement of C. posadasii from North America to South America. Here we comparatively analyze eighty-six genomes of the two Coccidioides species and establish local and species-wide population structures to not only clarify the earlier dispersal hypothesis but also provide evidence of likely ancestral populations and patterns of dispersal for the known subpopulations of C. posadasii.


Subject(s)
Coccidioides/isolation & purification , Coccidioidomycosis/microbiology , Central America/epidemiology , Coccidioides/classification , Coccidioides/genetics , Coccidioidomycosis/epidemiology , Phylogeny , South America/epidemiology , Southwestern United States/epidemiology
13.
Emerg Infect Dis ; 21(12): 2141-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26583534

ABSTRACT

Leptospira spp., which comprise 3 clusters (pathogenic, saprophytic, and intermediate) that vary in pathogenicity, infect >1 million persons worldwide each year. The disease burden of the intermediate leptospires is unclear. To increase knowledge of this cluster, we used new molecular approaches to characterize Leptospira spp. in 464 samples from febrile patients in rural, semiurban, and urban communities in Ecuador; in 20 samples from nonfebrile persons in the rural community; and in 206 samples from animals in the semiurban community. We observed a higher percentage of leptospiral DNA-positive samples from febrile persons in rural (64%) versus urban (21%) and semiurban (25%) communities; no leptospires were detected in nonfebrile persons. The percentage of intermediate cluster strains in humans (96%) was higher than that of pathogenic cluster strains (4%); strains in animal samples belonged to intermediate (49%) and pathogenic (51%) clusters. Intermediate cluster strains may be causing a substantial amount of fever in coastal Ecuador.


Subject(s)
Disease Outbreaks , Fever of Unknown Origin/diagnosis , Leptospira/pathogenicity , Leptospirosis/diagnosis , Animals , Ecuador/epidemiology , Fever of Unknown Origin/epidemiology , Fever of Unknown Origin/virology , Humans , Leptospira/genetics , Leptospira/virology , Leptospirosis/epidemiology , Prevalence , Rural Population , Sequence Analysis, DNA/methods , Urban Population
14.
mBio ; 5(6): e01721, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25370488

ABSTRACT

UNLABELLED: For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. IMPORTANCE: In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Epidemics , Genome, Bacterial , Molecular Typing , Vibrio cholerae O1/classification , Vibrio cholerae O1/genetics , Cholera/transmission , Genotype , Haiti/epidemiology , Molecular Epidemiology , Nepal , Phylogeography , Sequence Analysis, DNA , Vibrio cholerae O1/isolation & purification
15.
mBio ; 5(4): e01464-14, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25028429

ABSTRACT

The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America. Importance: Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic.


Subject(s)
Cryptococcus gattii/classification , Cryptococcus gattii/genetics , Genome, Fungal/genetics , Biological Evolution , Northwestern United States , South America
17.
Vector Borne Zoonotic Dis ; 13(5): 295-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23473224

ABSTRACT

Escherichia coli O157:H7 is frequently isolated from cases of diarrhea in many industrialized countries; however, it is seldom found in developing countries. The present manuscript reports the presence of E. coli O157:H7 in Ecuadorian livestock, a country where enterohemorrhagic E. coli disease in humans has never been reported. The Ecuadorian isolates were genetically related to some strains linked to clinical cases in the United States as assessed by multiple-locus variable number tandem repeat (VNTR) analysis.


Subject(s)
Disease Reservoirs , Escherichia coli Infections/veterinary , Escherichia coli O157/isolation & purification , Minisatellite Repeats/genetics , Animals , Bacterial Typing Techniques , Cattle , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Developing Countries , Diarrhea/epidemiology , Diarrhea/microbiology , Diarrhea/veterinary , Ecuador/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Feces/microbiology , Humans , Multilocus Sequence Typing , Zoonoses
20.
mBio ; 2(4): e00157-11, 2011.
Article in English | MEDLINE | ID: mdl-21862630

ABSTRACT

Cholera continues to be an important cause of human infections, and outbreaks are often observed after natural disasters, such as the one following the 2010 earthquake in Haiti. Once the cholera outbreak was confirmed, rumors spread that the disease was brought to Haiti by a battalion of Nepalese soldiers serving as United Nations peacekeepers. This possible connection has never been confirmed. We used whole-genome sequence typing (WGST), pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing to characterize 24 recent Vibrio cholerae isolates from Nepal and evaluate the suggested epidemiological link with the Haitian outbreak. The isolates were obtained from 30 July to 1 November 2010 from five different districts in Nepal. We compared the 24 genomes to 10 previously sequenced V. cholerae isolates, including 3 from the Haitian outbreak (began July 2010). Antimicrobial susceptibility and PFGE patterns were consistent with an epidemiological link between the isolates from Nepal and Haiti. WGST showed that all 24 V. cholerae isolates from Nepal belonged to a single monophyletic group that also contained isolates from Bangladesh and Haiti. The Nepalese isolates were divided into four closely related clusters. One cluster contained three Nepalese isolates and three Haitian isolates that were almost identical, with only 1- or 2-bp differences. Results in this study are consistent with Nepal as the origin of the Haitian outbreak. This highlights how rapidly infectious diseases might be transmitted globally through international travel and how public health officials need advanced molecular tools along with standard epidemiological analyses to quickly determine the sources of outbreaks.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Genetic Variation , Vibrio cholerae/genetics , Vibrio cholerae/isolation & purification , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Child , Disease Outbreaks , Female , Haiti/epidemiology , Humans , Male , Middle Aged , Molecular Sequence Data , Nepal/epidemiology , Phylogeny , Vibrio cholerae/classification , Vibrio cholerae/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL