Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Strength Cond Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38683971

ABSTRACT

ABSTRACT: Schram, B, Orr, R, Niederberger, B, Givens, A, Bernards, J, and Kelly, KR. Cardiovascular demand differences between male and female US Marine recruits during progressive loaded hikes. J Strength Cond Res XX(X): 000-000, 2024-Despite having to carry the same occupational load, female soldiers tend to be lighter than male soldiers. The aim of this study was to determine the differences in cardiovascular load between female and male US Marine recruits during progressive load carriage hikes. United States Marine Corps recruits (565 male recruits; 364 female recruits) completed 6 loaded hikes over 6 weeks (1: 10 kg, 30 minutes; 2: 10 kg, 45 minutes; 3: 15 kg, 30 minutes, 4: 15 kg, 45 minutes; 5: 20 kg, 30 minutes; 6: 20 kg, 45 minutes) during which cardiovascular response was measured. Average heart rate (HRavg), HR maximum (HRmax), and pace were measured via a wrist-worn physiological monitor. Independent sample t-tests were conducted to compare between sexes, with significance set at 0.008 after adjusting for multiple comparisons. The average female recruit had significantly lower body mass (BM) compared with the average male recruit (p < 0.001) and thus carried a significantly heavier relative load. (10 kg ∼17%, 15 kg ∼25%, 20 kg ∼33%, p < 0.001). There were no significant differences in pace in any hike, and no significant differences were found in HRavg or HRmax when comparing female and male Marines during Hike 1. For female Marines, HRavg was significantly higher compared with male Marines during Hike 2 (+6.5 b·min-1, p < 0.001) and Hike 3 (+7.4 b·min-1, p < 0.001), and both HRavg and HRmax were significantly higher in Hike 4 (+11.9 b·min-1, +8.4 b·min-1, p < 0.001), Hike 5 (+7.7 b·min-1, +7.9 b·min-1, p < 0.001), and Hike 6 (+6.9 b·min-1, +7.1 b·min-1, p < 0.001), respectively. Female Marines endured greater cardiovascular demand compared with male Marines during load carriage events when carrying loads greater than 15 kg (∼25% BM).

2.
Work ; 77(4): 1285-1294, 2024.
Article in English | MEDLINE | ID: mdl-38489209

ABSTRACT

BACKGROUND: During periods of high-volume vigorous exercise, United States Marine Corps recruits often experience musculoskeletal injuries. While the program of instruction (POI) for basic training is a defined training volume, the total workload of boot camp, including movements around the base, is unknown. OBJECTIVE: The present study aimed to quantify the daily total workload, energy expenditure, and sleep during basic recruit training at Marine Corps Recruit Depot (MCRD) San Diego. METHODS: Eighty-four male recruits from MCRD San Diego wore wrist wearable physiological monitors to capture their complete workload (mileage from steps), energy expenditure, and sleep throughout the 10-week boot camp. RESULTS: Marine recruits traveled an average of 11.5±3.4 miles per day (M±SD), expended 4105±823 kcal per day, and slept an average of 5 : 48±1 : 06 hours and minutes per night. While the POI designates a total of 46.3 miles of running and hiking, the actual daily average miles yielded approximately 657.6±107.2 miles over the 10-week boot camp. CONCLUSION: Recruit training requires high physical demand and time under tension due to the cumulative volume of movements around base in addition to the POI planned physical training.


Subject(s)
Military Personnel , Workload , Humans , Male , United States , Exercise , Energy Metabolism
3.
J Sports Sci Med ; 22(4): 658-666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045749

ABSTRACT

Wearables are lightweight, portable technology devices that are traditionally used to monitor physical activity and workload as well as basic physiological parameters such as heart rate. However recent advances in monitors have enabled better algorithms for estimation of caloric expenditure from heart rate for use in weight loss as well as sport performance. can be used for estimating energy expenditure and nutritional demand. Recently, the military has adopted the use of personal wearables for utilization in field studies for ecological validity of training. With popularity of use, the need for validation of these devices for caloric estimates is needed to assist in work-rest cycles. Thus the purpose of this effort was to evaluate the Polar Grit X for energy expenditure (EE) for use in military training exercises. Polar Grit X Pro watches were worn by active-duty elite male operators (N = 16; age: 31.7 ± 5.0 years, height: 180.1 ± 6.2 cm, weight: 91.7 ± 9.4 kg). Metrics were measured against indirect calorimetry of a metabolic cart and heart rate via a Polar heart rate monitor chest strap while exercising on a treadmill. Participants each performed five 10-minute bouts of running at a self-selected speed and incline to maintain a heart rate within one of five heart rate zones, as ordered and defined by Polar. Polar Grit X Pro watch had a good to excellent interrater reliability to indirect calorimetry at estimating energy expenditure (ICC = 0.8, 95% CI = 0.61-0.89, F (74,17.3) = 11.76, p < 0.0001) and a fair to good interrater reliability in estimating macronutrient partitioning (ICC = 0.49, 95% CI = 0.3-0.65, F (74,74.54) = 2.98, p < 0.0001). There is a strong relationship between energy expenditure as estimated from the Polar Grit X Pro and measured through indirect calorimetry. The Polar Grit X Pro watch is a suitable tool for estimating energy expenditure in free-living participants in a field setting and at a range of exercise intensities.


Subject(s)
Military Personnel , Humans , Male , Adult , Pilot Projects , Reproducibility of Results , Exercise/physiology , Energy Metabolism/physiology
4.
J Spec Oper Med ; 23(3): 74-81, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37490424

ABSTRACT

INTRODUCTION: Little data exist on the effect of extremely cold-water diving on thermo-metabolic hormone secretion. Moreover, the impact of repetitive dives on the stress response is unknown. The purpose of this study was to determine the effects of two daily bouts of cold-water diving on the hormonal and metabolic profile of elite military personnel and to measure the stress response. METHODS: Healthy, male, Norwegian Special Forces operators (n = 5) volunteered for this study. Physiological and hormone data were analyzed prior to and following twice-daily Arctic dives (3.3°C). RESULTS: Core temperature was maintained (p > .05), whereas skin temperature was significantly reduced over the course of each dive (p < .01). Pairwise comparisons revealed adrenocorticotropic hormone (ACTH) and cortisol concentration significantly decreased across both dives and days (p < .001). Adrenaline and noradrenaline significantly increased across both time and day (p < .001). Leptin, testosterone, and IGF-1 significantly decreased over time but recovered between days. CONCLUSION: The main findings of this effort are that there is a rapid sympathetic-adreno-medullary (SAM/SNS) response to cold-water diving and a suppression of the hypothalamic-pituitary-adrenal (HPA) axis and hormones related to repair and recovery. While the sample size was too small to determine the role of SAM/SNS, HPA, and thyroid hormone effect on thermoregulation, it addresses a gap in our understanding of physiological adaptions that occurs in extreme environments.


Subject(s)
Diving , Humans , Male , Cold Temperature , Adrenocorticotropic Hormone , Epinephrine , Water
5.
Front Physiol ; 14: 1165196, 2023.
Article in English | MEDLINE | ID: mdl-37293261

ABSTRACT

Purpose: To evaluate a closed-cell wet-suit for thermal protective capability during extreme cold water exposure at various depths. Methods: Thirteen (n = 13) elite military divers who were tasked with cold-water training, participated in this study. To mimic various depths, the Ocean Simulation Facility (OSF) at the Navy Experimental Diving Unit (NEDU) was pressurized to simulate dive depths of 30, 50, and 75fsw. Water temperature remained at 1.8-2.0°C for all dives. Four divers dove each day and used the MK16 underwater breathing apparatus with gas mixes of either N202 (79:21) or HeO2 (88:12). Mean skin temperature (TSK) (Ramanathan, 1964), core temperature (Tc), hand and foot readings were obtained every 30 min for 30 and 50fsw and every 15 min during the 75fsw dive. Results: TC was significantly reduced across all dives (p = 0.004); however, was preserved above the threshold for hypothermia (post dive Tc = 36.5 ± 0.4). There was no effect of gas mix on TC. TSK significantly decreased (p < 0.001) across all dives independent of depth and gas. Hand and foot temperatures resulted in the termination of three of the dives. There were no significant main effects for depth or gas, but there were significant main effects for time on hand temperature (p < 0.001) and foot temperature (p < 0.001). Conclusion: Core temperature is maintained above threshold for hypothermia. Variatioins in TC and TSK are a function of dive duration independent of depth or gas for a closed-cell wet-suit in cold water at various depths. However, both hand and foot temperatures reached values at which dexterity is compromised.

6.
J Strength Cond Res ; 37(9): 1761-1769, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37235207

ABSTRACT

ABSTRACT: Jensen, AE, Bernards, JR, Hamilton, JA, Markwald, RR, Kelly, KR, and Biggs, AT. Do not shoot me: potential consequences of force-on-force training modulate the human stress response. J Strength Cond Res 37(9): 1761-1769, 2023-Close-quarters combat (CQC) engagements trigger the "fight-or-flight" response, activating the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in response to perceived threats. However, it has yet to be shown if a force-on-force (FoF) CQC training environment will lead to adaptations in the physiological stress response or performance. United States Marines and Army infantry personnel participated in a 15-day CQC training program. The CQC program focused heavily on FoF training with the use of nonlethal training ammunition (NLTA). Data collections occurred on training days 1 and 15, during a simulated FoF-hostage rescue (HR) scenario and photorealistic target drill. For the FoF-HR, subjects were instructed to clear the shoot house, rescue the hostage, and only shoot hostile threat(s) with NLTA. The photorealistic target drills were similar, but replaced the role players in the FoF-HR with paper targets. Salivary alpha-amylase (sAA) and salivary cortisol were obtained immediately before entering and exiting the shoot house. Time to completion significantly decreased, between days 1 and 15, for both the FoF-HR and the photorealistic drills by 67.7 and 54.4%, respectively ( p < 0.05). Analyses revealed that the change in sAA, nonsignificantly, doubled from day 1 to 15 during FoF-HR ( p > 0.05), whereas the change in sAA decreased during the photorealistic drills across days ( p < 0.05). Cortisol was significantly higher during the FoF-HR in comparison to the photorealistic drills ( p < 0.05). These data suggest that potential consequences of FoF training heighten the stress response in conjunction with enhanced performance.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , Humans , Pituitary-Adrenal System , Saliva , Stress, Psychological
7.
Nutrients ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049480

ABSTRACT

Basic training is centered on developing the physical and tactical skills essential to train a recruit into a Marine. The abrupt increase in activity and energy expenditure in young recruits may contribute to high rates of musculoskeletal injuries, to which females are more susceptible. To date, the total workload of United State Marine Corps (USMC) bootcamp is unknown and should include movement around the military base (e.g., to and from dining facilities, training locations, and classrooms). Thus, the purpose of this effort was to quantify workload and caloric expenditure, as well as qualitatively assess the impact of female reproductive health and injury rates in female recruits. Female recruits (n = 79; age: 19.1 ± 0.2 years, weight: 59.6 ± 0.8 kg, height: 161.6 ± 0.7 cm) wore physiological monitors daily throughout 10 weeks of USMC bootcamp. Physical fitness test scores, physiological metrics from wearables, injury data, and menstrual cycle information were obtained. Female recruits on average expended 3096 ± 9 kcal per day, walked 11.0 ± 0.1 miles per day, and slept 5:43 ± 1:06 h:min per night throughout the 10 weeks of bootcamp. About one-third (35%) of female recruits sustained an injury. In a subset of females that were not taking birth control and had previously been menstruating, 85% experienced cycle dysfunction during boot camp. High levels of physical activity and caloric expenditure, coupled with the stress of a new environment and insufficient sleep, may lead to alterations in female reproductive cycles and musculoskeletal injuries in young USMC recruits.


Subject(s)
Military Personnel , Musculoskeletal Diseases , Humans , Female , Adolescent , Young Adult , Adult , Health Expenditures , Workload , Exercise , Physical Fitness/physiology , Menstrual Cycle
8.
Front Physiol ; 13: 842612, 2022.
Article in English | MEDLINE | ID: mdl-35874531

ABSTRACT

Introduction: Cold water exposure poses a unique physiological challenge to the human body. Normally, water submersion increases activation of parasympathetic tone to induce bradycardia in order to compensate for hemodynamic shifts and reduce oxygen consumption by peripheral tissues. However, elevated stress, such as that which may occur due to prolonged cold exposure, may shift the sympatho-vagal balance towards sympathetic activation which may potentially negate the dive reflex and impact thermoregulation. Objective: To quantify the acute stress response during prolonged extreme cold water diving and to determine the influence of acute stress on thermoregulation. Materials and Methods: Twenty-one (n = 21) subjects tasked with cold water dive training participated. Divers donned standard diving equipment and fully submerged to a depth of ≈20 feet, in a pool chilled to 4°C, for a 9-h training exercise. Pre- and post-training measures included: core and skin temperature; salivary alpha amylase (AA), cortisol (CORT), osteocalcin (OCN), testosterone (TEST) and dehydroepiandosterone (DHEA); body weight; blood glucose, lactate, and ketones. Results: Core, skin, and extremity temperature decreased (p < 0.001) over the 9-h dive; however, core temperature was maintained above the clinical threshold for hypothermia and was not correlated to body size (p = 0.595). There was a significant increase in AA (p < 0.001) and OCN (p = 0.021) and a significant decrease in TEST (p = 0.003) over the duration of the dive. An indirect correlation between changes in cortisol concentrations and changes in foot temperature (ρ = -0.5,p = 0.042) were observed. There was a significant positive correlation between baseline OCN and change in hand temperature (ρ = 0.66, p = 0.044) and significant indirect correlation between changes in OCN concentrations and changes in hand temperature (ρ = -0.59, p = 0.043). Conclusion: These data suggest that long-duration, cold water diving initiates a stress response-as measurable by salivary stress biomarkers-and that peripheral skin temperature decreases over the course of these dives. Cumulatively, these data suggest that there is a relationship between the acute stress response and peripheral thermoregulation.

9.
Mil Med Res ; 8(1): 66, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34886915

ABSTRACT

BACKGROUND: Musculoskeletal injuries (MSkIs) are a leading cause of health care utilization, as well as limited duty and disability in the US military and other armed forces. MSkIs affect members of the military during initial training, operational training, and deployment and have a direct negative impact on overall troop readiness. Currently, a systematic overview of all risk factors for MSkIs in the military is not available. METHODS: A systematic literature search was carried out using the PubMed, Ovid/Medline, and Web of Science databases from January 1, 2000 to September 10, 2019. Additionally, a reference list scan was performed (using the "snowball method"). Thereafter, an international, multidisciplinary expert panel scored the level of evidence per risk factor, and a classification of modifiable/non-modifiable was made. RESULTS: In total, 176 original papers and 3 meta-analyses were included in the review. A list of 57 reported potential risk factors was formed. For 21 risk factors, the level of evidence was considered moderate or strong. Based on this literature review and an in-depth analysis, the expert panel developed a model to display the most relevant risk factors identified, introducing the idea of the "order of importance" and including concepts that are modifiable/non-modifiable, as well as extrinsic/intrinsic risk factors. CONCLUSIONS: This is the qualitative systematic review of studies on risk factors for MSkIs in the military that has attempted to be all-inclusive. A total of 57 different potential risk factors were identified, and a new, prioritizing injury model was developed. This model may help us to understand risk factors that can be addressed, and in which order they should be prioritized when planning intervention strategies within military groups.


Subject(s)
Military Personnel , Musculoskeletal Diseases , Humans , Military Personnel/education , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Risk Factors
10.
Front Physiol ; 12: 674323, 2021.
Article in English | MEDLINE | ID: mdl-34658902

ABSTRACT

Introduction: Extreme environmental conditions induce changes in metabolic rate and substrate use due to thermoregulation. Cold-water full-body submersion for extended periods of time is inevitable for training and missions carried out by Naval Special Warfare divers. Anthropometric, physiologic, and metabolic data have been reported from partial immersion in cold water in non-thermally protected men; data is limited in thermally protected divers in extremely cold water. Thermoregulatory and metabolic demands during prolonged cold-water submersion in Naval Special Warfare divers are unknown. Objective: Assess thermoregulatory and metabolic demands of Naval Special Warfare divers surrounding prolonged cold-water submersion. Materials and Methods: Sixteen active-duty U.S. Navy Sea Air and Land (SEAL) operators tasked with cold-water dive training participated. Divers donned standard military special operations diving equipment and fully submerged to a depth of ∼ 6 m in a pool chilled to 5°C for a 6-h live training exercise. Metabolic measurements were obtained via indirect calorimetry for 10-min pre-dive and 5-min post dive. Heart rate, skin temperature, and core temperature were measured throughout the dive. Results: Core temperature was maintained at the end of the 6-h dive, 36.8 ± 0.4°C and was not correlated to body composition (body fat percentage, lean body mass) or metabolic rate. SEALs were not at risk for non-freezing cold injuries as mean skin temperature was 28.5 ± 1.6°C at end of the 6-h dive. Metabolic rate (kcal/min) was different pre- to post-dive, increasing from 1.9 ± 0.2 kcal/min to 2.8 ± 0.2 kcal/min, p < 0.001, 95% CI [0.8, 1.3], Cohen's d effect size 2.3. Post-dive substrate utilization was 57.5% carbohydrate, 0.40 ± 0.16 g/min, and 42.5% fat, 0.13 ± 0.04 g/min. Conclusion: Wetsuits supported effective thermoprotection in conjunction with increase in thermogenesis during a 6-h full submersion dive in 5°C. Core temperature was preserved with an expected decrease in skin temperature. Sustained cold-water diving resulted in a 53% increase in energy expenditure. While all participants increased thermogenesis, there was high inter-individual variability in metabolic rate and substrate utilization. Variability in metabolic demands may be attributable to individual physiologic adjustments due to prior cold exposure patterns of divers. This suggests that variations in metabolic adjustments and habituation to the cold were likely. More work is needed to fully understand inter-individual metabolic variability to prolonged cold-water submersion.

11.
Sci Rep ; 11(1): 13313, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172769

ABSTRACT

Stress can impact perception, especially during use-of-force. Research efforts can thus advance both theory and practice by examining how perception during use-of-force might drive behavior. The current study explored the relationship between perceptual judgments and performance during novel close-combat training. Analyses included perceptual judgments from close-combat assessments conducted pre-training and post-training that required realistic use-of-force decisions in addition to an artificially construed stress-inoculation event used as a training exercise. Participants demonstrated significant reductions in situational awareness while under direct fire, which correlated to increased physiological stress. The initial likelihood of firing upon an unarmed person predicted the perceptual shortcomings of later stress-inoculation training. Subsequently, likelihood of firing upon an unarmed person was reduced following the stress-inoculation training. These preliminary findings have several implications for low or zero-cost solutions that might help trainers identify individuals who are underprepared for field responsibilities.

12.
JOR Spine ; 3(2): e1079, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32613159

ABSTRACT

Magnetic resonance imaging (MRI) is a diagnostic tool that can be used to noninvasively assess lumbar muscle size and fatty infiltration, important biomarkers of muscle health. Diffusion tensor imaging (DTI) is an MRI technique that is sensitive to muscle microstructural features such as fiber size (an important biomarker of muscle health), which is typically only assessed using invasive biopsy techniques. The goal of this study was to establish normative values of level-dependent lumbar muscle size, fat signal fraction, and restricted diffusion assessed by MRI in a highly active population. Forty-two active-duty Marines were imaged using a (a) high-resolution anatomical, (b) fat-water separation, and (c) DT-MRI scan. The multifidus and erector spinae muscles were compared at each level using two-way repeated measures ANOVA. Secondary analysis included Three dimensional (3D) reconstructions to qualitatively assess lumbar muscle size, fatty infiltration, and fiber orientation via tractography. The erector spinae was found to be larger than the multifidus above L5, with lower fat signal fraction above L3, and a less restricted diffusion profile than the multifidus above L4, with this pattern reversed in the lower lumbar spine. 3D reconstructions demonstrated accumulations of epimuscular fat in the anterior and posterior regions of the lumbar musculature, with minimal intramuscular fatty infiltration. Tractography images demonstrated different orientations of adjacent lumbar musculature, which cannot be visualized with standard MRI pulse sequences. The level dependent differences found in this study provide a normative baseline, for which to better understand whole muscle and microstructural changes associated with aging, low back pain, and pathology.

13.
Mil Med ; 185(Suppl 1): 430-434, 2020 01 07.
Article in English | MEDLINE | ID: mdl-32074354

ABSTRACT

INTRODUCTION: Musculoskeletal overuse injuries are a serious problem in the military, particularly in basic combat training, resulting in hundreds of millions of dollars lost because of limited duty days, medical treatment, and high rates of reinjury. Injury risk models have been developed using peripheral computed tomography (pQCT)-based injury correlates. However, pQCT image capture on large number of recruits is not practical for military settings. Thus, this article presents a method to derive spatial density pQCT images from much lower resolution but more accessible dual-energy X-ray absorptiometry (DXA). MATERIALS AND METHODS: Whole-body DXA images and lower leg pQCT images for 51 male military recruits were collected before a 40-day School of Infantry. An artificial neural network model was constructed to relate the DXA density profiles to spatial pQCT density at the 38% and 66% tibial locations. RESULTS: Strong correlation, R2 = 0.993 and R2 = 0.990 for the 38% and 66% pQCT slices, respectively, was shown between spatial density predicted by the artificial neural network model and raw data. CONCLUSIONS: High potential exists to create a practical protocol using DXA in place of pQCT to assess stress fracture risk and aid in mitigating musculoskeletal injuries seen in military recruits.


Subject(s)
Absorptiometry, Photon/methods , Cumulative Trauma Disorders/diagnostic imaging , Military Personnel/statistics & numerical data , Tibia/injuries , Absorptiometry, Photon/instrumentation , Absorptiometry, Photon/standards , Bone Density/physiology , Cumulative Trauma Disorders/diagnosis , Humans , Male , Military Personnel/education , Tibia/diagnostic imaging , Young Adult
14.
Ergonomics ; 63(2): 133-144, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31709928

ABSTRACT

This study was conducted to test a modular scalable vest-load distribution system (MSV-LDS) against the plate carrier system (PC) currently used by the United States Marine Corps. Ten Marines engaged in 1.6 km load carriage trials in seven experimental conditions in a laboratory study. Kinematic, kinetic, and spatiotemporal gait parameters, muscle activity (electromyography), heart rate, caloric expenditure, shooting reaction times, and subjective responses were recorded. There was lower mean trapezius recruitment for the PC compared with the MSV-LDS for all conditions, and muscle activity was similar to baseline for the MSV-LDS. Twenty-seven Marines carrying the highest load were evaluated in the field, which measured an increase in energy expenditure with MSV-LDS; however, back discomfort was reduced. The field evaluation showed significantly reduced estimated ground reaction force on flat-ground segments with the MSV-LDS, and the data suggest both systems were comparable with respect to mobility and energy cost. Practitioner summary: This study found that a novel load distribution system appears to redistribute load for improved comfort as well as reduce estimated ground reaction force when engaged in hiking activities. Further, hiking with a load distribution system enables more neutral walking posture. Implications of load differences in loads carried are examined. Abbreviations: AGRF: anterior-posterior ground reaction forces; CAREN: Computer Assisted Rehabilitation Environment; GRF: ground reaction forces; HR: heart rate; ML-GRF: mediolateral ground reaction forces; MOLLE: Modular Lightweight Load-carrying Equipment; MSV-LDS: modular scalable vest-load distribution system; NHRC: Naval Health Research Center; PC: plate carrier; PPE: personal protective equipment; RPE: rating of perceived exertion; SAPI: small arms protective insert; sEMG: surface electromyography; USMC: United States Marine Corps; VGRF: Ground reaction forces in the vertical.


Subject(s)
Equipment Design , Gait/physiology , Muscle, Skeletal/physiology , Posture , Weight-Bearing , Adolescent , Adult , Biomechanical Phenomena , Electromyography , Energy Metabolism , Heart Rate , Humans , Kinetics , Military Personnel , Reaction Time , Task Performance and Analysis , Virtual Reality , Young Adult
15.
Steroids ; 152: 108504, 2019 12.
Article in English | MEDLINE | ID: mdl-31586604

ABSTRACT

Chronic exposure to multifactorial stress, such as that endured by elite military operators, may lead to overtraining syndrome and negatively impact hormonal regulation. In acute settings (<6 mos), military training has been shown to lead to hormonal dysfunction; however, less is known about the consequences of long-term military training. Thus, the purpose of this study was to determine the chronic effects of military operations and training on the hormone profile of elite military operators. A cross-sectional, random sample of active duty elite US military operators (n = 65, age = 29.8 ±â€¯1.0 yrs, height = 178.4 ±â€¯0.7 cm, weight = 85.1 ±â€¯2.0 kg) concomitantly engaged in rigorous physical training were recruited to participate in the study. Following an overnight fast, waking plasma concentrations of luteinizing hormone, total testosterone (TT), free testosterone, sex-hormone binding globulin, cortisol, thyroid stimulating hormone, triiodothyronine, and thyroxine were obtained. Data were analyzed for correlations and compared against normative reference values. There was a significant positive correlation between TT and cortisol (R2 = 0.07; P = 0.038). In addition, 43% of the participants (n = 28) had TT below age-based normative reference ranges. These results indicate that long-term military operations and training may place a large burden on the operators and depress or alter the hypothalamic pituitary, adrenal, gonadal, and thyroid axes.


Subject(s)
Athletes , Energy Intake , Nutrition Surveys , Testosterone/blood , Adult , Humans , Male , Middle Aged , Young Adult
16.
JOR Spine ; 2(2): e1057, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31463467

ABSTRACT

Military members are required to carry heavy loads frequently during training and active duty combat. We investigated if operationally relevant axial loads affect lumbar disc kinematics in forty-one male active duty Marines with no previous clinically diagnosed pathology. Marines were imaged standing upright with and without load. From T2-weighted magnetic resonance images, intervertebral disc (IVD) health and kinematic changes between loading conditions and across lumbar levels were evaluated using two-way repeated measures analysis of variance tests. IVD kinematics with loading were compared between individuals with and without signs of degeneration on imaging. Linear regression analyses were performed to determine associations between IVD position and kinematic changes with loading. Fifty-eight percent (118/205) of IVDs showed evidence of degeneration and 3% (7/205) demonstrated a disc bulge. IVD degeneration was not related to posterior annular position (P > .205). Changes in sagittal intervertebral angle were not associated with changes in posterior annular position between baseline and loaded conditions at any lumbar level (r < 0.267; P = .091-.746). Intervertebral angles were significantly larger in the lower regions of the spine (P < .001), indicating increased local lordosis when moving in the caudal direction Disc height at the L5/S1 level was significantly smaller (6.3 mm, mean difference = 1.20) than all other levels (P < .001) and baseline posterior disc heights tended to be larger at baseline (7.43 mm ± 1.46) than after loading (7.18 ± 1.57, P = .071). Individuals with a larger baseline posterior annular position demonstrated greater reduction with load at all levels (P < .002), with the largest reductions at L5/S1 level. Overall, while this population demonstrated some signs of disc degeneration, operationally relevant loading did not significantly affect disc kinematics.

17.
Mil Med ; 184(Suppl 1): 511-520, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30901397

ABSTRACT

Musculoskeletal injuries cost the U.S. Marine Corps approximately $111 million and 356,000 lost duty days annually. Information identifying the most common types of injuries and events leading to their cause would help target mitigation efforts. The purpose of this effort was to conduct an archival data review of injuries and events leading to injury during recruit training. An archival dataset of Marine recruits from 2011 to 2016 was reviewed and included 43,004 observations from 28,829 unique individuals. Injuries were classified as mild, moderate, and severe and categorized into new overuse, preexisting overuse, and traumatic. Injury classification and categorization were stratified by event in which the injury occurred. The majority of injuries were due to overuse, and the most common types were sprains, strains, iliotibial band syndrome, and stress fractures, which constituted over 40% of all injuries. Conditioning hikes were the primary event leading to injury, with 31% of all injuries occurring during this training; running claimed 12%. Most injuries sustained during basic training comprised sprains and strains. Marines who remained uninjured during basic training outperformed those who reported at least one injury on fitness tests. These results point to enhanced conditioning as a potential entry point to target future intervention efforts.


Subject(s)
Military Personnel/education , Musculoskeletal Diseases/etiology , Teaching/standards , Adult , Exercise Test/methods , Female , Humans , Male , Military Personnel/statistics & numerical data , Musculoskeletal Diseases/epidemiology , Prevalence , Risk Factors , Teaching/statistics & numerical data , United States/epidemiology
18.
Acta Diabetol ; 56(2): 211-217, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30612202

ABSTRACT

AIMS: Glucose effectiveness (GE) refers to the ability of glucose to influence its own metabolism through insulin-independent mechanisms. Diminished GE is a predictor of progression to type 2 diabetes. Exercise training improves GE, however, little is known about how dietary interventions, such as manipulating the glycemic index of diets, interact with exercise-induced improvements in GE in at-risk populations. METHODS: We enrolled 33 adults with obesity and pre-diabetes (17 males, 65.7 ± 4.3 years, 34.9 ± 4.2 kg m-2) into a 12-week exercise training program (1 h day-1 and 5 day week-1 at ~ 85% of maximum heart rate) while being randomized to concurrently receive either a low (EX-LOG: 40 ± 0.3 au) or high (EX-HIG: 80 ± 0.6 au) glycemic index diet. A 75-g oral-glucose-tolerance test (OGTT) was performed before and after the intervention and GE was calculated using the Nagasaka equation. Insulin resistance was estimated using a hyperinsulinemic-euglycemic clamp and cardiorespiratory fitness using a VO2max test. RESULTS: Both EX-LOG and EX-HIG groups had similar improvements in weight (8.6 ± 5.1 kg, P < 0.001), VO2max (6 ± 3.5 mL kg-1 min-1, P < 0.001) and clamp-measured peripheral insulin resistance (1.7 ± 0.9 mg kg-1 min-1, P < 0.001), relative to baseline data. GE in EX-LOG and EX-HIG was similar at baseline (1.9 ± 0.38 vs. 1.85 ± 0.3 mg dL-1 min-1, respectively; P > 0.05) and increased by ~ 20% post-intervention in the EX-LOG arm (∆GE: 0.07-0.57 mg dL-1 min-1, P < 0.05). Plasma free fatty acid (FFA) concentrations also decreased only in the EX-LOG arm (∆FFA: 0.13 ± 0.23 mmol L-1, P < 0.05). CONCLUSIONS: Our data suggest that a high glycemic index diet may suppress exercise-induced enhancement of GE, and this may be mediated through plasma FFAs.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Diet Therapy/methods , Exercise Therapy/methods , Glucose/metabolism , Obesity , Prediabetic State , Aged , Female , Glucose Tolerance Test , Glycemic Index , Humans , Insulin Resistance/physiology , Male , Middle Aged , Obesity/metabolism , Obesity/therapy , Prediabetic State/metabolism , Prediabetic State/therapy , Treatment Outcome
19.
Front Psychol ; 10: 2964, 2019.
Article in English | MEDLINE | ID: mdl-31993011

ABSTRACT

Mental skills training (MST) has been suggested to reduce stress in civilian and athletic populations, however, whether these techniques and practices transfer to a military population are unknown. Therefore, the purpose of this study was to evaluate two MST programs against a baseline condition, training-as-usual (TAU), during an intense, active-duty, military training environment. Two hundred and three Marines enrolled in the United States Marine Corps' Basic Reconnaissance Course participated in this effort (n = 203; age = 22.7 ± 3.3 years; height = 178 ± 6.35 cm; weight = 97.7 ± 8.3 kg; Mean ± SD). Each Marine was assigned to one of three groups, Mindfulness-Based Mind Fitness Training (MMFT), General Mental Skills Training (GMST), or TAU. Operational and cognitive performance measures, as well as, physiological metrics were obtained across three training phases (phase 1-3). Furthermore, phase 3 was sub-divided into pre-ambush, ambush and post-ambush time points. Significant group × time interactions were found for the total number of errors committed on the sustained attention response task (p = 0.004); as well as, plasma cortisol (p < 0.0001) and insulin-like growth factor-1 (IGF-1; p < 0.0001). There were mixed results between groups on operational performance tasks with the MST groups tending to perform better than TAU the more time participants had with MST instruction. During ambush, the differences among groups were especially pronounced for measures of information processing that one would expect MST to enhance: coordinates recall, plot time, and plot accuracy (p < 0.001), with improvements ranging from 24.7 to 87.9% for the MST conditions when compared to TAU. These data demonstrate that independent of the specific type of MST program, the fundamental characteristics of stress regulation embedded within each MST program may enhance performance and cognitive function during time of heightened stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...