Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(1): 315-336, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546762

ABSTRACT

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Ribonucleotides , Humans , Antiviral Agents/pharmacology , Exoribonucleases/metabolism , Ribonucleotides/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Drug Design
2.
bioRxiv ; 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35982684

ABSTRACT

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.

3.
Chemistry ; 28(58): e202201355, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35849314

ABSTRACT

Catch and release DNA decoys (CRDDs) utilize photochemically responsive nucleoside analogues that generate abasic sites upon exposure to light. Herein, we describe the synthesis and evaluation of four candidate CRDD monomers containing nucleobases that mimic endogenous pyrimidines: 2-nitroimidazole (2-NI), 2-nitrobenzene (2-NB), 2-nitropyrrole (2-NP) and 3-nitropyrrole (3-NP). Our studies reveal that 2-NI and 2-NP can function as CRDDs, whereas 3-NP and 2-NB undergo decomposition and transformation to a higher-ordered structure upon photolysis, respectively. When incorporated into DNA, 2-NP undergoes rapid photochemical cleavage of the anomeric bond (1.8 min half-life) to yield an abasic site. Finally, we find that all four pyrimidine mimics show significantly greater stability when base-paired against the previously reported 7-nitroindole CRDD monomer. Our work marks the expansion of CRDD technology to both purine and pyrimidine scaffolds.


Subject(s)
Nitroimidazoles , Nucleosides , Nucleosides/chemistry , DNA/chemistry , Pyrimidines/chemistry , Purines , Technology , Nitrobenzenes
4.
RSC Adv ; 11(50): 31373-31376, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496844

ABSTRACT

Remdesivir is an antiviral nucleoside phosphoramidate with activity against multiple viruses, including SARS-CoV-2. To enable studies of viral polymerases with RNA containing remdesivir, we report an efficient synthesis of a phosphoramidite of GS-441524, the nucleoside precursor of remdesivir, and its incorporation into RNA using automated solid-phase RNA synthesis.

5.
J Med Chem ; 63(5): 1882-1891, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31913619

ABSTRACT

The training of new medicinal chemists is vital to the future of the field, and as graduate students at this critical stage, we are uniquely positioned to comment on our training. Herein, we discuss the perspectives from graduate researchers before, during, and after graduate school by utilizing survey data obtained from five medicinal chemistry programs in the Midwest and recent alumni of the University of Minnesota. We also reflect on the female perspective within the field of medicinal chemistry. Finally, we offer recommendations to both students and faculty in the hopes of helping future generations succeed in the field.


Subject(s)
Chemistry, Pharmaceutical/education , Chemistry, Pharmaceutical/trends , Gender Identity , Research Personnel/education , Research Personnel/trends , Universities/trends , Career Choice , Education, Graduate/trends , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...