Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
Environ Health Insights ; 18: 11786302241276669, 2024.
Article in English | MEDLINE | ID: mdl-39247720

ABSTRACT

The unprecedented 2021 Heat Dome caused wide-ranging and long-lasting impacts in western Canada, including 619 confirmed heat-related deaths in British Columbia, a doubling of emergency medical calls, increased hospitalisations, infrastructure failures and stress on plants and animals. However, such varied socio-economic consequences of extreme heat can be challenging to capture using a single post-event analysis method. Therefore, there is a need to explore alternative approaches and data sources. Using the 2021 Heat Dome as a case study, a post-event analysis using online news media articles (n = 2909) from 5 subscription news databases and a grey literature search was conducted to identify the socio-economic impacts of the extreme heat event in Canada. The articles reported a wide range of effects to the natural environment (n = 1366), social infrastructure and services (n = 1121), human health (n = 1074), critical infrastructure (n = 988) and the private sector (n = 165). The media-based post-event analysis captured various impacts, some of which have not been identified through other data sources and approaches. Overall, we show that media analysis can complement traditional post-event analysis methods and provide additional perspectives to governments and public health and safety officials.

2.
Mult Scler Relat Disord ; 91: 105833, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39241465

ABSTRACT

BACKGROUND: Individuals with Multiple Sclerosis (MS) experience impairments in heat dissipation, compromising core temperature regulation during exercise. OBJECTIVE: To examine the efficacy of combined head-and-neck cooling as administered via a commercially available cooling cap and neck wrap in mitigating increases in core temperature during exercise. METHODS: On separate days, ten (7 females) adults (46.1 ± 11.6 years) with relapsing-remitting MS performed semi-recumbent cycling consisting of an incremental exercise bout to volitional fatigue in a temperate environment (23 °C, 50 % relative humidity) while undergoing head-and-neck cooling using a cooling cap and neck wrap maintained at 10 °C (COLD) or 24-26 °C (NEUTRAL). Prior to and following a 30-minute post-exercise recovery, functional capacity was assessed by a battery of tests consisting of a 2-minute walk test, Timed 25-Foot Walk test, sit-to-stand test, and Berg Balance Scale. Core (ingestible pill) and skin temperatures were recorded continuously. The level of fatigue was measured with questionnaires. RESULTS: The duration of the incremental exercise test increased with the application of COLD (28.4 ± 5.1 min) versus NEUTRAL water (vs 20.8 ± 5.1 min) (p = 0.001) and was paralleled by a significant reduction in body temperatures (∼1 °C, p < 0.05). The distance covered during the 2-min walk test performed after the incremental exercise test increased with the COLD (176.5 ± 0.6 m), relative to the NEUTRAL condition (147.7 ± 43.5 m) (p = 0.01). Fatigue levels did not change between conditions. CONCLUSION: We show that head-and-neck cooling with cold water effectively enhances exercise tolerance and mitigates increases in core temperature during exercise in individuals with MS.

3.
Article in English | MEDLINE | ID: mdl-39241006

ABSTRACT

OBJECTIVE: To evaluate reactive oxygen species (ROS) modulation of cutaneous vasodilation during local and whole-body passive heating in young and older adults. METHODS: Cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed in young and older adults (10 per group) using laser-Doppler flowmetry at 4 dorsal forearm sites treated with 1) Ringer's solution (control), 2) 100 µM apocynin (NADPH oxidase inhibitor), 3) 10 µM allopurinol (xanthine oxidase inhibitor), or 4) 10 µM tempol (superoxide dismutase mimetic), via intradermal microdialysis during local (protocol-1) and whole-body heating (protocol-2). Protocol-1: forearm skin sites were set at 33°C during baseline and then progressively increased to 39°C and 42°C (30 min each). Protocol-2: participants were immersed in warm water (35°C, mid-sternum) with the experimental forearm above water level and local skin sites maintained at 34°C. Bath temperature was increased (~40°C) to clamp core temperature at 38.5°C for 60 min. RESULTS: Protocol-1: there were significant treatment site by age interactions for the 39°C (P=0.015) and 42°C (P=0.004) plateaus. Although, no significant effects were observed after post-hoc adjustment. Protocol-2: there was a significant treatment site by age interaction (P<0.001) whereby %CVCmax in older adults was 11.0% [7.4,14.6] higher for apocynin (P<0.001), 8.9% [5.3,12.5] higher for allopurinol (P<0.001) and 4.8% [1.3,8.4] higher for tempol (P=0.016) sites relative to the control site. CONCLUSION: ROS derived from NADPH oxidase and xanthine oxidase attenuate cutaneous vasodilation in older adults during passive whole-body heating, but not during local skin heating, with negligible effects on their young counterparts for either heating modality.

4.
Article in English | MEDLINE | ID: mdl-39137443

ABSTRACT

Foot immersion and neck cooling are recommended cooling strategies for protecting heat-vulnerable persons during heat waves. While we recently showed that these strategies do not limit core temperature increases in older adults during prolonged heat exposure, we did observe small reductions in heart rate. Expanding on these findings, we examined the effects of foot immersion with and without neck cooling on cardiac autonomic function. Seventeen adults (9 females; 65-81 years) underwent 3 randomized, 6-hour exposures to 38°C and 35% relative humidity with: no cooling (control), foot immersion (20°C water), or foot immersion with a wet towel (20°C) around the neck. Cardiac autonomic responses were measured at baseline and end-exposure. These included heart rate variability, cardiac and systolic blood pressure responses to standing, indexed via the 30:15 ratio and supine-to-standing systolic pressure change, respectively, and baroreflex sensitivity during repeated sit-to-stand maneuvers. The 30:15 ratio was 0.04 [95% CI: 0.01, 0.07] greater with foot immersion and neck cooling (1.08 (0.04)) relative to control (1.04 (0.06); P=0.018). Similarly, standing systolic pressure was elevated 9 [0, 17] mm Hg with foot immersion and neck cooling (P=0.043). That said, neither difference remained statistically significant after adjusting for multiplicity (Padjusted≥0.054). No differences in 30:15 ratio or standing systolic pressure were observed with foot immersion alone, while heart rate variability and baroreflex sensitivity were unaffected by either cooling intervention. While foot immersion with neck cooling potentially improved cardiac autonomic responses in older adults exposed to simulated indoor overheating, these effects were small and of questionable clinical importance.

5.
Med Sci Sports Exerc ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160700

ABSTRACT

PURPOSE: Maximum heart rate (HRmax) is commonly used to estimate exercise intensity. Since direct measurement of HRmax is not always practical, prediction equations were developed. However, most equations have not been properly validated in older adults at low and high risk of cardiovascular disease (CVD). We sought to: 1) assess the accuracy of commonly used equations to predict HRmax amongst adults at low and high CVD risk and, 2) determine if SuperLearner (SL) modeling combining base machine algorithms could improve HRmax prediction. METHODS: A total of 1208 participants (61.6 ± 7.3 years; 62.7% male) were included. HRmax was measured during a maximal cardiorespiratory exercise test. Predicted HRmax was estimated using the following published equations: Fox, Astrand, Tanaka, Gelish and Gulati, and a SL model. Bland-Altman analyses as well as performance indicators such as root mean squared error (RMSE) and Lin's CCC were performed. RESULTS: All predicted HRmax-derived equations were positively associated with measured HRmax (women; r = 0.31: men; r = 0.46, p ≤ 0.001) but to a greater extent using a SL model (women; r = 0.47: men; r = 0.59, p ≤ 0.001). Overall, all equations tended to overestimate measured HRmax, with a RMSE which varied between 10.4 and 12.3 bpm. Although the SL model outperformed other equations, with no significant difference between measured and predicted HRmax, RMSE remained high (11.3 bpm). Lack of accuracy was mainly observed among adults with low aerobic fitness and with CVD risk factors, such as obesity, diabetes, and hypertension. CONCLUSIONS: We showed that commonly used equations and the SL model have insufficient accuracy to predict HRmax among adults. The performance of the prediction equations varied considerably according to the population clinical characteristics such as the presence of CVD risk factors or a low aerobic fitness.

6.
Temperature (Austin) ; 11(3): 203-246, 2024.
Article in English | MEDLINE | ID: mdl-39193048

ABSTRACT

The likelihood of exposure to overheated indoor environments is increasing as climate change is exacerbating the frequency and severity of hot weather and extreme heat events (EHE). Consequently, vulnerable populations will face serious health risks from indoor overheating. While the relationship between EHE and human health has been assessed in relation to outdoor temperature, indoor temperature patterns can vary markedly from those measured outside. This is because the built environment and building characteristics can act as an important modifier of indoor temperatures. In this narrative review, we examine the physiological and behavioral determinants that influence a person's susceptibility to indoor overheating. Further, we explore how the built environment, neighborhood-level factors, and building characteristics can impact exposure to excess heat and we overview how strategies to mitigate building overheating can help reduce heat-related mortality in heat-vulnerable occupants. Finally, we discuss the effectiveness of commonly recommended personal cooling strategies that aim to mitigate dangerous increases in physiological strain during exposure to high indoor temperatures during hot weather or an EHE. As global temperatures continue to rise, the need for a research agenda specifically directed at reducing the likelihood and impact of indoor overheating on human health is paramount. This includes conducting EHE simulation studies to support the development of consensus-based heat mitigation solutions and public health messaging that provides equitable protection to heat-vulnerable people exposed to high indoor temperatures.

7.
Am J Physiol Regul Integr Comp Physiol ; 327(3): R369-R377, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39102464

ABSTRACT

It is commonly thought that steady-state thermoregulatory responses are achieved within 30-90 min of compensable heat stress. However, this assumption is based on measurements of whole body heat exchange during exercise, which stabilize (equilibrate) more rapidly than deep body temperatures, especially under resting conditions. To support the design of ecologically relevant heat exposure studies, we quantified equilibrium times for deep body temperature, as indexed by rectal temperature, in young and older adults resting in the heat. We also evaluated the lag in rectal temperature equilibrium relative to whole body heat storage (direct calorimetry). Equilibrium times were estimated with data from two laboratory-based trials (NCT04353076 and NCT04348630) in which 83 adults aged 19-80 yr (34 female) were exposed to simulated heat-wave conditions for 8-9 h. When assessed at the group level, it took rectal temperature 3.3 [bootstrap 95% confidence interval: 2.9-3.9] h to reach thermal equilibrium (<0.05°C/h rate of change) in young adults exposed to 40°C, 9% relative humidity (RH). In older adults, who were exposed to a greater range of conditions (31°C-40°C, 9-45% RH), equilibrium times were longer, ranging from 4.4 [3.8-5.3] to 5.2 [4.9-5.4] h. Furthermore, rectal temperature equilibrium was delayed 0.9 [0.5-1.4] and 1.8 [0.9-2.7] h compared with whole body heat storage in young and older adults, respectively (only assessed in 40°C, 9% RH). Individual-level equilibrium times ranged from 1 to 8 h. These findings highlight the importance of ecologically relevant exposure durations in translational research assessing the physiological impacts of hot weather.NEW & NOTEWORTHY Deep body (rectal) temperature took 3-5 h on average and up to 6-8 h at the individual level to reach thermal equilibrium in young and older adults resting in the heat. Furthermore, stable rectal temperatures were delayed by up to 2 h relative to the achievement of heat balance (0 kJ/min rate of heat storage). We provide the first quantification of the temporal profiles of thermal strain during extended rest in conditions simulating hot weather.


Subject(s)
Body Temperature Regulation , Hot Temperature , Humans , Aged , Female , Male , Middle Aged , Adult , Aged, 80 and over , Young Adult , Body Temperature Regulation/physiology , Aging/physiology , Body Temperature/physiology , Time Factors , Rest/physiology , Age Factors
8.
Article in English | MEDLINE | ID: mdl-39200717

ABSTRACT

People with schizophrenia have died at disproportionately higher rates during recent extreme heat events (EHEs) in Canada, including the deadly 2021 Heat Dome in British Columbia (B.C.). However, to date, little research has qualitatively focused on how people with schizophrenia experience and respond to EHEs. This study aimed to (i) explore how people with schizophrenia experienced and were impacted by the 2021 Heat Dome physically, cognitively, and emotionally and (ii) understand their level of awareness and health-protective actions taken in response to the EHE. Between October 2023 and February 2024, interviews were conducted with 35 people with schizophrenia who experienced the 2021 Heat Dome in a community setting within B.C., Canada. The semi-structured interviews were guided by pre-defined questions to explore the participant's background, living situation, social network, awareness and access to heat-mitigation measures. The transcripts were analyzed using a descriptive form of thematic analysis. Participants shared critical insights on how the EHE impacted them, including descriptions of mild to severe physical manifestations of heat stress (e.g., fainting, heat rashes), the triggering of schizophrenia-related symptoms (e.g., paranoia, hallucinations), and the detrimental effects on their energy levels and emotional stability, which further caused disruptions to their everyday life. Participants also illustrated gaps in knowledge and challenges experienced with accessing information, which hindered their ability to manage the heat exposure effectively and, for some, resulted in no actions (or counter-intuitive actions) being taken to mitigate the heat. These findings demonstrate the complex ways that individuals with schizophrenia experienced and responded to the 2021 Heat Dome and revealed various situational and contextual factors that further compounded the challenge of heat mitigation. These findings can support the development of tailored individual and community-level heat response and communication initiatives and strategies for people with schizophrenia.


Subject(s)
Schizophrenia , Humans , Male , Female , Adult , Middle Aged , British Columbia , Extreme Heat/adverse effects , Interviews as Topic , Aged , Young Adult , Canada
9.
Physiol Rep ; 12(13): e16140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38997217

ABSTRACT

The brain derived-neurotrophic factor (BDNF) Val66Met polymorphism causes functional changes in BDNF, and is associated with obesity and some psychiatric disorders, but its relationship to health-related quality of life (HRQoL) remains unknown. This study examined, in youth with obesity, whether carriers of the BDNF Val66met polymorphism Met-alleles (A/A or G/A) differed from noncarriers (G/G) on HRQoL. The participants were 187 adolescents with obesity. Ninety-nine youth were carriers of the homozygous Val/Val (G/G) alleles, and 88 were carriers of the Val/Met (G/A) or Met/Met (A/A) alleles. Blood samples were drawn in the morning after an overnight fast for genotyping. HRQoL was measured using the Pediatric-Quality of Life core version. Compared to carriers of the Val66Met Val (G/G) alleles, carriers of the Met-Alleles reported significantly higher physical -HRQoL (p = 0.02), school-related HRQoL, (p = 0.05), social-related HRQoL (p = 0.05), and total HRQoL (p = 0.03), and a trend for Psychosocial-HRQoL. Research is needed to confirm our findings and determine whether carriers of the BDNF Val66Met homozygous Val (G/G) alleles may be at risk of diminished HRQoL, information that can influence interventions in a high-risk population of inactive youth with obesity.


Subject(s)
Brain-Derived Neurotrophic Factor , Polymorphism, Single Nucleotide , Quality of Life , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/blood , Male , Adolescent , Female , Child , Obesity/genetics , Obesity/psychology , Pediatric Obesity/genetics , Pediatric Obesity/psychology
10.
Int J Pharm ; 662: 124497, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39033941

ABSTRACT

The development of an effective transdermal drug delivery protocol to eccrine sweat glands is important for the advancement of research on the human sweating response. We investigated whether microneedle treatment prior to the application of pilocarpine, a hydrophilic and sudorific agent that does not induce sweating due to a limited percutaneous passive diffusion by skin application alone, augments sweat production. We applied three microneedle arrays to forearm skin sites simultaneously (n = 20). Upon removal of the microneedles, 1 % pilocarpine was applied to each site for 5-, 15-, and 30-min for the assessment of sweat gland function. In parallel, pilocarpine was administered by transdermal iontophoresis (5-min) at a separate site. Sweat rate was assessed continuously via the ventilated capsule technique. Pilocarpine augmented sweat rate at the 15- and 30-min periods as compared to the application at 5-min. The sweating responses induced by the 15- and 30-min application of pilocarpine were equivalent to âˆ¼ 80 % of that measured at the iontophoretically treated sites. Notably, we observed a correlation in sweat rate between these two transdermal drug delivery methods. Altogether, our findings show that pre-treatment of microneedle arrays can enhance transdermal delivery efficiency of pilocarpine to human eccrine sweat glands.


Subject(s)
Administration, Cutaneous , Iontophoresis , Needles , Pilocarpine , Sweating , Pilocarpine/administration & dosage , Humans , Sweating/drug effects , Male , Adult , Iontophoresis/methods , Female , Young Adult , Drug Delivery Systems/instrumentation , Muscarinic Agonists/administration & dosage , Sweat , Skin/metabolism
11.
Article in English | MEDLINE | ID: mdl-38917483

ABSTRACT

This study investigated the impact of a multiday heatwave on nocturnal physiology, behavior, and sleep under controlled conditions with comprehensive monitoring of environmental factors and participant activities. Seven young healthy males were confined for ten days in controlled conditions that ranged between hot-to-warm (day:35.4°C, night:26.3°C) during nights 4-6 and temperate (day:25.4°C, night:22.3°C) before (nights 1-3) and after (nights 7-10) the heatwave. Measurements included core and skin temperatures, heart rate, sympathovagal balance, vasomotion indicators, urine samples, blanket coverage, subjective sleep assessments, and partial polysomnography. The average nocturnal core temperature was 0.2°C higher during and after the heatwave compared to the pre-heatwave period, with this difference being more pronounced (+0.3°C) in the first two hours of sleep (p<0.001). For every 0.1°C rise in overnight core temperature, the total sleep time decreased by 14 minutes (pseudo-R2=0.26, p=0.01). The elevated core temperatures occurred despite the participants exhibiting evident thermoregulatory behavior, as they covered 30% less body surface during the heatwave compared to pre- and post-heatwave periods (p<0.001). During the heatwave, mean skin temperature at bedtime was 1.3°C higher than pre-heatwave and 0.8°C higher than post-heatwave periods (p<0.001). No differences in other responses, including heart rate and vasomotion indicators, were observed. The paper details a 20-minute sleepwalking episode that was coupled with marked changes in sleepwalker's thermophysiological responses. In conclusion, the simulated heatwave resulted in higher overnight core temperature which was associated with reduced total sleep time. Behavioral thermoregulation during sleep may serve as a defense against these effects, though more research is needed.

12.
Article in English | MEDLINE | ID: mdl-38875714

ABSTRACT

Changes in hydration status occur throughout the day affecting physiological and behavioural functions. However, little is known about the hydration status of free-living Japanese children and the seasonality of this response. We evaluated hydration status estimated by urine osmolality (Uosm) in 349 children (189 boys and 160 girls, 9.5 ± 2.6 years, range: 6-15 years) upon waking at home and during a single school day in spring (April) and summer (July). Further, we assessed the efficacy of employing self-assessment of urine colour (UC; based on an 8-point scale) by children to monitor their hydration status. Early morning Uosm was greater in the spring (903 ± 220 mOsm L-1; n = 326) as compared to summer (800 ± 244 mOsm L-1; n = 125) (P = 0.003, paired t test, n = 104). No differences, however, were observed in Uosm during the school day (P = 0.417, paired t test, n = 32). While 66% and 50% of children were considered underhydrated (Uosm ≥ 800 mOsm L-1) upon waking in the spring and summer periods, respectively, more children were underhydrated (∼12%) during the school day. Self-reported UC was similar between seasons as assessed in the morning and school day (P ≥ 0.101, paired t test), which differed from the pattern of responses observed with Uosm. We showed that a significant number of Japanese children are likely underhydrated especially in the spring period. Children do not detect seasonal changes in hydration from self-assessed UC, limiting its utility to manage hydration status in children.

13.
Appl Physiol Nutr Metab ; 49(9): 1252-1270, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830263

ABSTRACT

Older adults are at elevated risk of heat-related mortality due to age-associated declines in thermoregulatory and cardiovascular function. However, the inter-individual factors that exacerbate physiological heat strain during heat exposure remain unclear, making it challenging to identify more heat-vulnerable subgroups. We therefore explored factors contributing to inter-individual variability in physiological responses of older adults exposed to simulated hot weather. Thirty-seven older adults (61-80 years, 16 females) rested for 8 h in 31 and 36 °C (45% relative humidity). Core (rectal) temperature, heart rate (HR), HR variability, mean arterial pressure (MAP), and cardiac autonomic responses to standing were measured at baseline and end-exposure. Bootstrapped least absolute shrinkage and selection operator regression was used to evaluate whether variation in these responses was related to type 2 diabetes (T2D, n = 10), hypertension (n = 18), age, sex, body morphology, habitual physical activity levels, and/or heat-acclimatization. T2D was identified as a predictor of end-exposure HR (with vs. without: 13 beats/min (bootstrap 95% confidence interval: 6, 23)), seated MAP (-7 mmHg (-18, 1)), and the systolic pressure response to standing (20 mmHg (4, 36)). HR was also influenced by sex (female vs. male: 8 beats/min (1, 16)). No other predictors were identified. The inter-individual factors explored did not meaningfully contribute to the variation in body temperature responses in older adults exposed to simulated indoor overheating. By contrast, cardiovascular responses were exacerbated in females and individuals with T2D. These findings improve understanding of how inter-individual differences contribute to heat-induced physiological strain in older persons.


Subject(s)
Heart Rate , Hot Temperature , Humans , Female , Male , Aged , Heart Rate/physiology , Aged, 80 and over , Middle Aged , Hot Temperature/adverse effects , Diabetes Mellitus, Type 2/physiopathology , Blood Pressure/physiology , Heat Stress Disorders/physiopathology , Body Temperature/physiology , Hypertension/physiopathology , Body Temperature Regulation/physiology , Heat-Shock Response/physiology
14.
Appl Physiol Nutr Metab ; 49(9): 1241-1251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38772045

ABSTRACT

Heat stress induced damage to the gastrointestinal barrier can induce local and systemic inflammatory reactions implicated in heat-stroke. Gastrointestinal barrier damage has been shown to be greater in older relative to young adults following hyperthermia. However, comparisons between young and older adults have been limited to brief exposures (3 h), which may not reflect the duration of heat stress experienced during heat waves. We therefore evaluated markers of intestinal epithelial damage (log transformed intestinal fatty acid binding protein, IFABPLOG), microbial translocation (soluble cluster of differentiation 14, sCD14LOG), and systemic inflammation (tumour necrosis factor alpha, TNF-αLOG; interleukin 6, IL-6LOG; C-reactive protein, CRP) in 19 young (interquartile range: 21-27 years; 10 females) and 37 older (68-73 years; 10 females) adults before and after 9 h of rest in 40 °C (9% relative humidity). The magnitude of the increase in IFABPLOG was 0.38 log pg/mL (95% CI, 0.10, 0.65 log pg/mL) greater in the older relative to young cohort (P = 0.049) after 9 h heat exposure. At baseline both IL-6LOG and CRP concentrations were higher in the older (IL-6: 2.67 (1.5) log pg/mL, CRP: 0.28 (1.5) mg/mL) relative to the young (IL-6: 1.59 log pg/mL, SD 1.2; CRP: 0.11 mg/mL, SD 1.7) group (both P ≤ 0.001). The change in IL-6 and CRP was similar between groups following 9 h heat exposure (IL-6: P = 0.053; CRP: P = 0.241). Neither sCD14LOG and TNF-αLOG were different between groups at baseline nor altered after 9 h heat exposure. Our data indicate that age may modify intestinal epithelial injury following 9 h of passive heat exposure.


Subject(s)
Biomarkers , C-Reactive Protein , Enterocytes , Humans , Female , Male , Aged , Adult , Young Adult , Biomarkers/blood , C-Reactive Protein/metabolism , Enterocytes/metabolism , Interleukin-6/blood , Hot Temperature , Inflammation/blood , Fatty Acid-Binding Proteins/blood , Lipopolysaccharide Receptors/blood , Tumor Necrosis Factor-alpha/blood , Bacterial Translocation , Age Factors , Aging , Heat-Shock Response/physiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
15.
Eur J Appl Physiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753017

ABSTRACT

PURPOSE: Prolonged work in the heat increases the risk of acute kidney injury (AKI) in young men. Whether aging and age-associated chronic disease may exacerbate the risk of AKI remains unclear. METHODS: We evaluated plasma neutrophil gelatinase-associated lipocalin (NGAL) and serum kidney injury molecule-1 (KIM1) before and after 180 min of moderate-intensity work (200 W/m2) in temperate (wet-bulb globe temperature [WBGT] 16 °C) and hot (32 °C) environments in healthy young (n = 13, 22 years) and older men (n = 12, 59 years), and older men with type 2 diabetes (T2D; n = 9, 60 years) or hypertension (HTN; n = 9, 60 years). RESULTS: There were no changes in NGAL or KIM1 concentrations following prolonged work in temperate conditions in any group. Despite a similar work tolerance, the relative change in NGAL was greater in the older group when compared to the young group following exercise in the hot condition (mean difference + 82 ng/mL; p < 0.001). Baseline concentrations of KIM1 were ~ 22 pg/mL higher in the older relative to young group, increasing by ~ 10 pg/mL in each group after exercise in the heat (both p ≤ 0.03). Despite a reduced work tolerance in the heat in older men with T2D (120 ± 40 min) and HTN (108 ± 42 min), elevations in NGAL and KIM1 were similar to their healthy counterparts. CONCLUSION: Age may be associated with greater renal stress following prolonged work in the heat. The similar biomarker responses in T2D and HTN compared to healthy older men, alongside reduced exercise tolerance in the heat, suggest these individuals may exhibit greater vulnerability to heat-induced AKI if work is prolonged.

16.
J Occup Environ Hyg ; 21(6): 409-422, 2024.
Article in English | MEDLINE | ID: mdl-38718416

ABSTRACT

With climate change fueling more frequent and intense periods of hot weather, heat stress management programs are becoming increasingly important for protecting the health and safety of workers in the Canadian mining industry. While the inclusion of heat-mitigation measures such as those provided by the American College of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) are commonly employed by industry, there is a need to develop more comprehensive industry-specific measures for heat stress prevention and management. To better understand current heat management practices and identify opportunities for improvement, an exploratory survey of 51 employees responsible for health and safety at underground mining (n = 35), and surface operations (n = 16) (e.g., open-pit mining, milling, smelting, and exploration site) was conducted in Canada. The respondents answered 50 questions related to workplace heat stress management, including descriptors of the workplace environment, perceived heat stress hazard, administration of heat stress management programming, heat stress emergency procedures, environmental monitoring strategies, and knowledge of mining-specific regulations related to heat stress. Twenty-four managers (47%) reported that heat-related illnesses led to restricted duty or lost time claims at their site, with a median of 5 [IQR: 2-10, max: 30] reportable heat-related illnesses occurring per site annually. Many also felt that heat-related illnesses are under-reported by their workforce (n = 36, 71%). Most sites reported established heat stress management programs to prevent heat illness (n = 43, 84%), typically based on the TLVs (n = 38, 75%). Although some organizations do conduct pre-task evaluations for heat stress (n = 30, 59%), more than half do not conduct post-job evaluations (n = 28, 55%) or pre-employment screening for heat stress vulnerability (n = 3, 6%). While our findings indicate that the health and safety managers recognize the hazard posed by heat and have stated practices to help address the hazard, we also observed inconsistencies in heat stress management programming across the sample. Developing and adopting a standard heat stress management and reporting system would be an important step toward protecting workers from existing and emerging threats from extreme heat and climate change.


Subject(s)
Heat Stress Disorders , Mining , Humans , Canada , Heat Stress Disorders/prevention & control , Surveys and Questionnaires , Occupational Exposure , Adult , Male , Hot Temperature , Occupational Diseases/prevention & control , Occupational Diseases/epidemiology , Environmental Monitoring/methods , Workplace , Female , Middle Aged , Occupational Health
17.
Lancet Planet Health ; 8(4): e256-e269, 2024 04.
Article in English | MEDLINE | ID: mdl-38580427

ABSTRACT

Health agencies worldwide have historically cautioned that electric fans accelerate body-heat gain during hot weather and heatwaves (typically in air temperatures ≥35°C). However, guidance published since 2021 has suggested that fans can still cool the body in air temperatures up to 40°C by facilitating sweat evaporation, and therefore are an inexpensive yet sustainable alternative to air conditioning. In a critical analysis of the reports cited to support this claim, we found that although fan use improves sweat evaporation, these benefits are of insufficient magnitude to exert meaningful reductions in body core temperature in air temperatures exceeding 35°C. Health agencies should continue to advise against fan use in air temperatures higher than 35°C, especially for people with compromised sweating capacity (eg, adults aged 65 years or older). Improving access to ambient cooling strategies (eg, air conditioning or evaporative coolers) and minimising their economic and environmental costs through policy initiatives, efficient cooling technology, and combined use of low-cost personal interventions (eg, skin wetting or fan use) are crucial for climate adaptation.


Subject(s)
Body Temperature Regulation , Hot Temperature , Adult , Humans , Cold Temperature , Temperature
18.
Article in English | MEDLINE | ID: mdl-38673318

ABSTRACT

Among the most vulnerable to the health-harming effects of heat are people experiencing homelessness. However, during the 2021 Heat Dome, the deadliest extreme heat event (EHE) recorded in Canada to date, people experiencing homelessness represented the smallest proportion of decedents (n = 3, 0.5%)-despite the impacted region (British Columbia) having some of the highest rates of homelessness in the country. Thus, we sought to explore the 2021 Heat Dome as a media-based case study to identify potential actions or targeted strategies that were initiated by community support agencies, individuals and groups, and communicated in the news during this EHE that may have aided in the protection of this group or helped minimize the mortality impacts. Using media articles collated for a more extensive investigation into the effects of the 2021 Heat Dome (n = 2909), we identified a subset which included content on people experiencing homelessness in Canada (n = 274, 9%). These articles were thematically analysed using NVivo. Three main themes were identified: (i) public warnings issued during the 2021 Heat Dome directly addressed people experiencing homelessness, (ii) community support services explicitly targeting this population were activated during the heat event, and (iii) challenges and barriers faced by people experiencing homelessness during extreme heat were communicated. These findings suggest that mass-media messaging and dedicated on-the-ground initiatives led by various organizations explicitly initiated to support individuals experiencing homelessness during the 2021 Heat Dome may have assisted in limiting the harmful impacts of the heat on this community.


Subject(s)
Ill-Housed Persons , Ill-Housed Persons/statistics & numerical data , Humans , Canada , Extreme Heat/adverse effects , British Columbia , Mass Media/statistics & numerical data , Hot Temperature/adverse effects
19.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R588-R598, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682241

ABSTRACT

Type 2 diabetes (T2D) is associated with reduced whole body sweating during exercise-heat stress. However, it is unclear if this impairment is related to exercise intensity and whether it occurs uniformly across body regions. We evaluated whole body (direct calorimetry) and local (ventilated-capsule technique; chest, back, forearm, thigh) sweat rates in physically active men with type 2 diabetes [T2D; aged 59 (7) yr; V̇o2peak 32.3 (7.6) mL·kg-1·min-1; n = 26; HbA1c 5.1%-9.1%] and without diabetes [Control; aged 61 (5) yr; V̇o2peak 37.5 (5.4) mL·kg-1·min-1; n = 26] during light- (∼40% V̇o2peak), moderate- (∼50% V̇o2peak), and vigorous- (∼65% V̇o2peak) intensity exercise (elicited by fixing metabolic heat production at ∼150, 200, 250 W·m-2, respectively) in 40°C, ∼17% relative humidity. Whole body sweating was ∼11% (T2D: Control mean difference [95% confidence interval]: -37 [-63, -12] g·m-2·h-1) and ∼13% (-50 [-76, -25] g·m-2·h-1) lower in the T2D compared with the Control group during moderate- and vigorous- (P ≤ 0.001) but not light-intensity exercise (-21 [-47, 4] g·m-2·h-1; P = 0.128). Consequently, the diabetes-related reductions in whole body sweat rate were 2.3 [1.6, 3.1] times greater during vigorous relative to light exercise (P < 0.001). Furthermore, these diabetes-related impairments in local sweating were region-specific during vigorous-intensity exercise (group × region interaction: P = 0.024), such that the diabetes-related reduction in local sweat rate at the trunk (chest, back) was 2.4 [1.2, 3.7] times greater than that at the limbs (thigh, arm). In summary, when assessed under hot, dry conditions, diabetes-related impairments in sweating are exercise intensity-dependent and greater at the trunk compared with the limbs.NEW & NOTEWORTHY This study evaluates the influence of exercise intensity on decrements in whole body sweating associated with type 2 diabetes. Furthermore, it investigates whether diabetes-related sweating impairments were exhibited uniformly or heterogeneously across body regions. We found that whole body sweating was attenuated in the type 2 diabetes group relative to control participants during moderate- and vigorous-intensity exercise but not light-intensity exercise; impairments were largely mediated by reduced sweating at the trunk rather than the limbs.


Subject(s)
Diabetes Mellitus, Type 2 , Exercise , Sweating , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Male , Middle Aged , Exercise/physiology , Aged , Case-Control Studies , Body Temperature Regulation
20.
J Therm Biol ; 121: 103831, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565070

ABSTRACT

Hypothermia is a critical consequence of extreme cold exposure that increases the risk of cold-related injury and death in humans. While the initiation of cytoprotective mechanisms including the process of autophagy and the heat shock response (HSR) is crucial to cellular survival during periods of stress, age-related decrements in these systems may underlie cold-induced cellular vulnerability in older adults. Moreover, whether potential sex-related differences in autophagic regulation influence the human cold stress response remain unknown. We evaluated the effect of age and sex on mechanisms of cytoprotection (autophagy and the HSR) and cellular stress (apoptotic signaling and the acute inflammatory response) during ex vivo hypothermic cooling. Venous blood samples from 20 healthy young (10 females; mean [SD]: 22 [2] years) and 20 healthy older (10 females; 66 [5] years) adults were either isolated immediately (baseline) for peripheral blood mononuclear cells (PBMCs) or exposed to water bath temperatures maintained at 37, 35, 33, 31, or 4 °C for 90 min before PBMC isolation. Proteins associated with autophagy, apoptosis, the HSR, and inflammation were analyzed via Western blotting. Indicators of autophagic initiation and signaling (LC3, ULK1, and beclin-2) and the HSR (HSP90 and HSP70) increased when exposed to hypothermic temperatures in young and older adults (all p ≤ 0.007). Sex-related differences were only observed with autophagic initiation (ULK1; p = 0.015). However, despite increases in autophagic initiators ULK1 and beclin-2 (all p < 0.001), this was paralleled by autophagic dysfunction (increased p62) in all groups (all p < 0.001). Further, apoptotic (cleaved-caspase-3) and inflammatory (IL-6 and TNF-α) signaling increased in all groups (all p < 0.001). We demonstrated that exposure to hypothermic conditions is associated with autophagic dysfunction, irrespective of age or sex, although there may exist innate sex-related differences in cytoprotection in response to cold exposure as evidenced through altered autophagic initiation.


Subject(s)
Autophagy , Leukocytes, Mononuclear , Humans , Male , Female , Aged , Young Adult , Adult , Middle Aged , Heat-Shock Response , Apoptosis , Cold Temperature , Hypothermia/blood , Cold-Shock Response
SELECTION OF CITATIONS
SEARCH DETAIL