Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(649): eabo0686, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35704599

ABSTRACT

T cell-derived pro-inflammatory cytokines are a major driver of rheumatoid arthritis (RA) pathogenesis. Although these cytokines have traditionally been attributed to CD4 T cells, we have found that CD8 T cells are notably abundant in synovium and make more interferon (IFN)-γ and nearly as much tumor necrosis factor (TNF) as their CD4 T cell counterparts. Furthermore, using unbiased high-dimensional single-cell RNA-seq and flow cytometric data, we found that the vast majority of synovial tissue and synovial fluid CD8 T cells belong to an effector CD8 T cell population characterized by high expression of granzyme K (GzmK) and low expression of granzyme B (GzmB) and perforin. Functional experiments demonstrate that these GzmK+ GzmB+ CD8 T cells are major cytokine producers with low cytotoxic potential. Using T cell receptor repertoire data, we found that CD8 GzmK+ GzmB+ T cells are clonally expanded in synovial tissues and maintain their granzyme expression and overall cell state in blood, suggesting that they are enriched in tissue but also circulate. Using GzmK and GzmB signatures, we found that GzmK-expressing CD8 T cells were also the major CD8 T cell population in the gut, kidney, and coronavirus disease 2019 (COVID-19) bronchoalveolar lavage fluid, suggesting that they form a core population of tissue-associated T cells across diseases and human tissues. We term this population tissue-enriched expressing GzmK or TteK CD8 cells. Armed to produce cytokines in response to both antigen-dependent and antigen-independent stimuli, CD8 TteK cells have the potential to drive inflammation.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Granzymes/metabolism , Humans
2.
Cell Rep Med ; 1(8): 100144, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33163981

ABSTRACT

In this single-center, retrospective cohort analysis of hospitalized coronavirus disease 2019 (COVID-19) patients, we investigate whether inflammatory biomarker levels predict respiratory decline in patients who initially present with stable disease. Examination of C-reactive protein (CRP) trends reveals that a rapid rise in CRP levels precedes respiratory deterioration and intubation, although CRP levels plateau in patients who remain stable. Increasing CRP during the first 48 h of hospitalization is a better predictor (with higher sensitivity) of respiratory decline than initial CRP levels or ROX indices (a physiological score of respiratory function). CRP, the proinflammatory cytokine interleukin-6 (IL-6), and physiological measures of hypoxemic respiratory failure are correlated, which suggests a mechanistic link. Our work shows that rising CRP predicts subsequent respiratory deterioration in COVID-19 and may suggest mechanistic insight and a potential role for targeted immunomodulation in a subset of patients early during hospitalization.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , C-Reactive Protein/analysis , Humans , Inflammation , Intensive Care Units , Interleukin-6/analysis , Middle Aged , Prognosis , Respiratory Insufficiency/blood , Respiratory Insufficiency/physiopathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
3.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31536480

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathologic T cell-B cell interactions and autoantibody production. Defining the T cell populations that drive B cell responses in SLE may enable design of therapies that specifically target pathologic cell subsets. Here, we evaluated the phenotypes of CD4+ T cells in the circulation of 52 SLE patients drawn from multiple cohorts and identified a highly expanded PD-1hiCXCR5-CD4+ T cell population. Cytometric, transcriptomic, and functional assays demonstrated that PD-1hiCXCR5-CD4+ T cells from SLE patients are T peripheral helper (Tph) cells, a CXCR5- T cell population that stimulates B cell responses via IL-21. The frequency of Tph cells, but not T follicular helper (Tfh) cells, correlated with both clinical disease activity and the frequency of CD11c+ B cells in SLE patients. PD-1hiCD4+ T cells were found within lupus nephritis kidneys and correlated with B cell numbers in the kidney. Both IL-21 neutralization and CRISPR-mediated deletion of MAF abrogated the ability of Tph cells to induce memory B cell differentiation into plasmablasts in vitro. These findings identify Tph cells as a highly expanded T cell population in SLE and suggest a key role for Tph cells in stimulating pathologic B cell responses.


Subject(s)
B-Lymphocytes/immunology , Interleukins/metabolism , Lupus Erythematosus, Systemic/immunology , Proto-Oncogene Proteins c-maf/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Adult , Aged , CD11c Antigen/metabolism , CRISPR-Cas Systems/genetics , Case-Control Studies , Cell Communication/drug effects , Cell Communication/genetics , Cell Communication/immunology , Cell Culture Techniques , Cell Separation , Cells, Cultured , Coculture Techniques , Female , Flow Cytometry , Gene Knockout Techniques , Humans , Interleukins/antagonists & inhibitors , Lupus Erythematosus, Systemic/blood , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins c-maf/genetics , RNA-Seq , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...