Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Biomed Pharmacother ; 173: 116374, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447451

Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.


Colonic Neoplasms , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Chromatin/genetics , Hydroxamic Acids/pharmacology , Apoptosis/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Cell Line, Tumor , Tumor Suppressor Protein p53/genetics
2.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353396

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Proteomics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Drug Resistance, Neoplasm , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor
3.
PLoS Genet ; 19(10): e1010988, 2023 Oct.
Article En | MEDLINE | ID: mdl-37831730

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.


Huntington Disease , Mice , Animals , Huntington Disease/genetics , Huntington Disease/pathology , RNA, Circular/genetics , RNA Splicing , Alternative Splicing/genetics , Gene Expression Profiling , Trinucleotide Repeat Expansion/genetics , Huntingtin Protein/genetics
4.
Int Rev Cell Mol Biol ; 380: 97-148, 2023.
Article En | MEDLINE | ID: mdl-37657861

Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.

5.
Cancers (Basel) ; 15(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36831382

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.

6.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Article En | MEDLINE | ID: mdl-36537238

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Alternative Splicing , Cadherins , Histones , Chromatin , Histones/metabolism , Lysine/metabolism , RNA/metabolism , Cadherins/genetics , Humans , Induced Pluripotent Stem Cells , Neural Stem Cells , Autism Spectrum Disorder/genetics
7.
Int J Mol Sci ; 23(10)2022 May 14.
Article En | MEDLINE | ID: mdl-35628321

Extracellular vesicles (EVs) are membranous particles released by all cell types. Their role as functional carrier of bioactive molecules is boosted by cells that actively secrete them in biological fluids or in the intercellular space (interstitial EVs, iEVs). Here we have optimised a method for the isolation and characterization of zebrafish iEVs from whole melanoma tissues. Zebrafish melanoma iEVs are around 140 nm in diameter, as determined by nanoparticle tracking and transmission electron microscopy (TEM) analysis. Western blot analysis shows enrichment for CD63 and Alix in the iEV fraction, but not in melanoma cell lysates. Super resolution and confocal microscopy reveal that purified zebrafish iEVs are green fluorescent protein positive (GFP+), indicating that they integrate the oncogene GFP-HRASV12G used to induce melanoma in this model within their vesicular membrane or luminal content. Analysis of RNA-Seq data found 118 non-coding (nc)RNAs differentially distributed between zebrafish melanoma and their iEVs, with only 17 of them being selectively enriched in iEVs. Among these, the RNA components of RNAses P and MRP, which process ribosomal RNA precursors, mitochondrial RNAs, and some mRNAs, were enriched in zebrafish and human melanoma EVs, but not in iEVs extracted from brain tumours. We found that melanoma iEVs induce an inflammatory response when injected in larvae, with increased expression of interferon responsive genes, and this effect is reproduced by MRP- or P-RNAs injected into circulation. This suggests that zebrafish melanoma iEVs are a source of MRP- and P-RNAs that can trigger inflammation in cells of the innate immune system.


Extracellular Vesicles , Melanoma , Animals , Extracellular Vesicles/metabolism , Inflammation/genetics , Inflammation/metabolism , Melanoma/genetics , Melanoma/metabolism , RNA, Untranslated/metabolism , Zebrafish/genetics
8.
Nucleic Acids Res ; 50(5): 2566-2586, 2022 03 21.
Article En | MEDLINE | ID: mdl-35150567

In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding.


Histone Deacetylase Inhibitors , Transcriptome , Acetylation , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , MEF2 Transcription Factors/genetics , Vorinostat/pharmacology
9.
Front Cell Dev Biol ; 9: 708389, 2021.
Article En | MEDLINE | ID: mdl-34409038

Human induced pluripotent stem cells (hiPSCs) represent an unlimited cell source for the generation of patient-specific dopaminergic (DA) neurons, overcoming the hurdle of restricted accessibility to disease-affected tissue for mechanistic studies on Parkinson's disease (PD). However, the complexity of the human brain is not fully recapitulated by existing monolayer culture methods. Neurons differentiated in a three dimensional (3D) in vitro culture system might better mimic the in vivo cellular environment for basic mechanistic studies and represent better predictors of drug responses in vivo. In this work we established a new in vitro cell culture system based on the microencapsulation of hiPSCs in small alginate/fibronectin beads and their differentiation to DA neurons. Optimization of hydrogel matrix concentrations and composition allowed a high viability of embedded hiPSCs. Neural differentiation competence and efficiency of DA neuronal generation were increased in the 3D cultures compared to a conventional 2D culture methodology. Additionally, electrophysiological parameters and metabolic switching profile confirmed increased functionality and an anticipated metabolic resetting of neurons grown in alginate scaffolds with respect to their 2D counterpart neurons. We also report long-term maintenance of neuronal cultures and preservation of the mature functional properties. Furthermore, our findings indicate that our 3D model system can recapitulate mitochondrial superoxide production as an important mitochondrial phenotype observed in neurons derived from PD patients, and that this phenotype might be detectable earlier during neuronal differentiation. Taken together, these results indicate that our alginate-based 3D culture system offers an advantageous strategy for the reliable and rapid derivation of mature and functional DA neurons from hiPSCs.

10.
Cancers (Basel) ; 12(4)2020 Apr 22.
Article En | MEDLINE | ID: mdl-32331249

Background: The up-regulation of a telomere maintenance mechanism (TMM) is a common feature of cancer cells and a hallmark of cancer. Routine methods for detecting TMMs in tumor samples are still missing, whereas telomerase targeting treatments are becoming available. In paediatric cancers, alternative lengthening of telomeres (ALT) is found in a subset of sarcomas and malignant brain tumors. ALT is a non-canonical mechanism of telomere maintenance developed by cancer cells with no-functional telomerase. Methods: To identify drivers and/or markers of ALT, we performed a differential gene expression analysis between two zebrafish models of juvenile brain tumors, that differ only for the telomere maintenance mechanism adopted by tumor cells: one is ALT while the other is telomerase-dependent. Results: Comparative analysis of gene expression identified five genes of the pre-replicative complex, ORC4, ORC6, MCM2, CDC45 and RPA3 as upregulated in ALT. We searched for a correlation between telomerase levels and expression of the pre-replicative complex genes in a cohort of paediatric brain cancers and identified a counter-correlation between telomerase expression and the genes of the pre-replicative complex. Moreover, the analysis of ALT markers in a group of 20 patients confirmed the association between ALT and increased RPA and decreased H3K9me3 localization at telomeres. Conclusions: Our study suggests that telomere maintenance mechanisms may act as a driver of telomeric DNA replication and chromatin status in brain cancers and identifies markers of ALT that could be exploited for precise prognostic and therapeutic purposes.

11.
PLoS Genet ; 15(3): e1007765, 2019 03.
Article En | MEDLINE | ID: mdl-30897080

Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.


Huntingtin Protein/genetics , Huntington Disease/genetics , Alleles , Animals , Cell Differentiation/genetics , Disease Models, Animal , Gene Frequency/genetics , Genotype , Huntingtin Protein/physiology , Mice/embryology , Mutation , Nerve Tissue Proteins/genetics , Phenotype
12.
Plant J ; 86(1): 62-74, 2016 Apr.
Article En | MEDLINE | ID: mdl-26919684

Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple.


Genome, Plant/genetics , Genotyping Techniques/methods , Malus/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping , Gene Expression Profiling , Genome-Wide Association Study , Genotype , Linkage Disequilibrium , Oligonucleotide Array Sequence Analysis
...