Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Foods ; 12(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297339

ABSTRACT

A growing number of health-conscious consumers are looking for animal protein alternatives with similar texture, appearance, and flavor. However, research and development still needs to find alternative non-meat materials. The aim of this study was to develop a mushroom-based minced meat substitute (MMMS) from edible Pleurotus sajor-caju (PSC) mushrooms and optimize the concentration of chickpea flour (CF), beetroot extract, and canola oil. CF was used to improve the textural properties of the MMMS by mixing it with PSC mushrooms in ratios of 0:50, 12.5:37.5, 25:25, 37.5:12.5, and 50:0. Textural and sensory attributes suggest that PSC mushrooms to CF in a ratio of 37.5:12.5 had better textural properties, showing hardness of 2610 N and higher consumer acceptability with protein content up to 47%. Sensory analysis suggests that 5% (w/w) canola oil showed the most acceptable consumer acceptability compared to other concentrations. Color parameters indicate that 0.2% beetroot extract shows higher whiteness, less redness, and higher yellowness for both fresh and cooked MMMS. This research suggests that MMMS containing PSC, CF, canola oil, and beetroot extract could be a suitable alternative and sustainable food product which may lead to higher consumer adoption as a meat substitute.

2.
Foods ; 12(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107359

ABSTRACT

Plant-based (PB) meat alternatives are developing due to the consumer's demand, especially those who are mainly health-concerned. Soy proteins (SP) are commonly used as the main ingredients for PB meat analogues; however, SP may have adverse effects on the cognitive function and mood of humans. This study aimed to use grey oyster mushroom (GOM) and chickpea flour (CF) as an alternative source of SP to prepare emulsion-type sausages (ES). The effect of different hydrocolloids and oil on the quality of sausage was also investigated. The sausage was prepared using different concentrations of GOM and CF (20:20, 25:15, and 30:10 w/w). The GOM to CF ratio 25:15 was selected for the ES based on protein content, textural properties, and sensory attributes. The result indicated that sausage containing konjac powder (KP) and rice bran oil (RBO) provided a better texture and consumer acceptability. The final product showed higher protein (36%, dry basis), less cooking loss (4.08%), purge loss (3.45%), higher emulsion stability, and better consumer acceptability than the commercial sausage. The best recipe for mushroom-based ES is 25% GOM, 15% CF, 5% KP, and 5% RBO. In addition, GOM and CF could be an alternative option to replace SP in PB meat products.

3.
Foods ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36981195

ABSTRACT

This research aimed to determine the feasibility of using mushrooms as an alternative ingredient in texturized vegetable protein (TVP) production using a single-screw extruder. TVPs from King Oyster (TVP-KO) and Pheonix mushroom (TVP-PH) were successfully developed and characterized. The visual appearance of TVP was reddish-brown, with a distinct roasted mushroom-soybean aroma. When rehydrated and cooked, both TVPs provided a minced meat-like appearance and chewy meat texture comparable to commercial TVP (TVP-Com); however, they had inferior water and oil holding and rehydration capacities. TVPs contained comparable protein content to TVP-Com (45-47 wt%), slightly lower carbohydrate content (33-36 wt% vs. 39 wt%), and ash (3-4 wt% vs. 8 wt%), but higher lipid content (7-8 wt% vs. 0.84 wt%) than TVP-Com. Sai-aua prepared from TVP-KO gained the highest overall acceptability. Mushrooms proved to be a potential source for TVP production due to their availability, low cost, nutritional value, and health benefits. Moreover, this finding helps add value to traditional meat products, which offer an opportunity for developing non-animal products with satisfactory sensory properties and low cost. In addition, the study would provide scientific resources for developing plant-based meat products that address health awareness and economic and environmental sustainability concerns.

4.
Foods ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36496700

ABSTRACT

The consumption of raw yam tuber through grated yam "tororo" is a major and popular diet in Japan. However, few studies have been undertaken to evaluate the digestive characteristics of raw yam tubers. This study aimed to fill this gap by investigating the changes in the protein profile, protein and starch digestibility, antioxidant capacity and microstructure of two typical yam tubers (Nagaimo N-10 and Nebaristar) in the Japanese diet, applying a simulated in vitro digestion method. Results showed that both samples contained a considerable protein content of about 11% (dry basis) and a protein digestibility of 43-49%. The electrophoretic patterns confirmed that dioscorin was the main protein of the yam tuber, and it could be digested into peptides and free amino acids with low molecular weight during in vitro digestion. The starch hydrolysis results suggested that eating raw yam tuber cannot induce a fast glycemic increase for consumers due to a low starch digestibility of 4.4-6.1%. In addition, Nebaristar showed a higher bioaccessibility in some key amino acids and total phenolic content than the Nagaimo N-10. This study provides some essential nutritional information and simulated digestion behaviours of the raw yam tubers, which could be useful for consumers and industries when buying and processing yam tubers from the perspective of changes in the nutritional profile during digestion.

5.
Cancers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36139518

ABSTRACT

Riceberry has recently been acknowledged for its beneficial pharmacological effects. Riceberry bran oil (RBBO) exhibited anti-proliferation activity in various cancer cell lines. However, animal studies of RBBO on anti-carcinogenicity and its molecular inhibitory mechanism have been limited. This study purposed to investigate the chemopreventive effects of RBBO on the carcinogen-induced liver and colorectal carcinogenesis in rats. Rats were injected with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) and further orally administered with RBBO equivalent to 100 mg/kg body weight of γ-oryzanol 5 days/week for 10 weeks. RBBO administration suppressed preneoplastic lesions including hepatic glutathione S-transferase placental form positive foci and colorectal aberrant crypt foci. Accordingly, RBBO induced hepatocellular and colorectal cell apoptosis and reduced pro-inflammatory cytokine expression. Interestingly, RBBO effectively promoted the alteration of gut microbiota in DEN- and DMH-induced rats, as has been shown in the elevated Firmicutes/Bacteroidetes ratio. This outcome was consistent with an increase in butyrate in the feces of carcinogen-induced rats. The increase in butyrate reflects the chemopreventive properties of RBBO through the mechanisms of its anti-inflammatory properties and cell apoptosis induction in preneoplastic cells. This would indicate that RBBO containing γ-oryzanol, phytosterols, and tocols holds significant potential in the prevention of cancer.

6.
Foods ; 11(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35885385

ABSTRACT

The current market trends in modern sedentary lifestyles drive the development of new functional products able to fulfill consumers' demand for a healthy diet. Whole wheat bread contains more protein and fiber than white bread; however, it could be improved in terms of protein content and quality. Cricket powder, which contains high protein (55.11, wt%), could be used as an alternative source to tackle those deficiencies in such bread. Hence, the study aimed to apply cricket powder in the whole wheat bread formula to enrich protein content, indispensable amino acids and determine their physico-chemical properties, consumers' acceptance, and shelf-life storage. The results showed that all enriched bread presented high protein (18.97−25.94, wt%), fat (10.91−15.07, wt%), and ash (2.09−2.33, wt%) with the increment of the cricket powder than those of the control bread. Enriched breads' crust colors were not significantly different (p > 0.05), while crumb colors were darker (L* = 55.64−64.48) compared to the control (L* = 69.98). Enriched bread had a hard texture and required a lot of chewing force compared to the control. Furthermore, all samples yielded a shelf-life of 5 days when monitoring the mold growth. From the results, the bread enriched with 20% cricket powder yielded the best consumers' acceptance score of 77%. It was predominantly high in indispensable amino acids such as leucine, phenylalanine, lysine, and arginine. Therefore, cricket powder could be a novel alternative protein source and successfully utilized in whole wheat bread to enhance its protein content and indispensable amino acids with consumers' acceptance responding to the current market trend.

7.
Crit Rev Food Sci Nutr ; 62(17): 4684-4705, 2022.
Article in English | MEDLINE | ID: mdl-33511849

ABSTRACT

Phenolic compounds, omnipresent in plants, are a crucial part of the human diet and are of considerable interest due to their antioxidant properties and other potential beneficial health effects, for instance, antidiabetic, antihypertensive, anti-inflammatory, and anticancer properties. The consumption of a variety of plant-based foods containing various phenolic compounds has increased due to published scientific verification of several health benefits. The release of phenolic compounds and change in their bioactivities examined through in vitro simulated gastrointestinal digestion could provide information on the biological potency of bioactive components, which will allow us to elucidate their metabolic pathways and bioactivities at target sites. This review reports on the recent research results focused on changes during the gastro and/or intestinal phase. The effect of digestive enzymes and digestive pH conditions during simulated digestion accounted for the variations in bioaccessibility and bioavailability of phenolic antioxidants as well as the corresponding antioxidant activities were also summarized and presented in the review.


Subject(s)
Antioxidants , Digestion , Anti-Inflammatory Agents , Antioxidants/chemistry , Humans , Phenols/chemistry , Plant Extracts
8.
Foods ; 10(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34945544

ABSTRACT

Different proteases can be applied to produce certain bioactive peptides. This study focused on the effects of some commercial proteases and drying processes on the physical, chemical, and biological properties of chicken breast hydrolysates (CBH). Chicken breast hydrolyzed with Alcalase® presented a higher degree of hydrolysis (DH) than papain. Moreover, the treatment with Alcalase®, followed by papain (A-P), was more proficient in producing antioxidant activities than a single enzyme treatment. Conditions comprising 0.63% Alcalase® (w/w) at pH 8.0 and 52.5 °C for 3 h, followed by 0.13% papain (w/w) at pH 6.0 and 37 °C for 3 h, resulted in the highest yields of DH and peptide contents. The spray-dried microencapsulated powder improved the physicochemical properties including moisture content, color measurement, solubility, and particle morphology. In summary, the dual enzyme application involving the hydrolysis of Alcalase® and papain, coupled with the spray-drying process, could be used to produced antioxidant CBH.

9.
Sci Rep ; 11(1): 14257, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244542

ABSTRACT

Protein digestibility of soybean obtained from the main manufacturing steps for natto, such as soaking (soaked soybeans 'S'), boiling (boiled soybeans 'B'), and fermentation (fermented soybeans 'F'), was examined in this study. Biochemical indices for the processed soybeans from each manufacturing step and those digested fractions by simulated in vitro gastrointestinal digestion were also evaluated. The result showed a significant (P < 0.05) increase in the protein digestibility of B (48.71 ± 0.04%) and F (50.21 ± 0.45%) compared to that of S (20.58 ± 0.25%), accompanying the accumulation of small protein sub-fractions and essential amino acids. Besides, antioxidant activity indices of all digested fractions increased around two to fourfold at the end of the simulated digestion. F showed a consistently increasing trend when the digestion stage progressed and maximum values overall at the final digestion stage.  Soybeans from fermentation step showed higher protein digestibility and indispensable amino acids as well as potential bioactivities than those from boiling and soaking step. The results demonstrated that manufacturing steps improved nutritional values of soybean protein, such as bioavailability of amino acids and certain bioactivities.


Subject(s)
Glycine max/metabolism , Amino Acids/metabolism , Fermentation , Nutritive Value , Soybean Proteins/metabolism
10.
Food Chem ; 348: 129094, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33516995

ABSTRACT

Effect of in vitro digestion on bioactive compounds, biological activities of coffee pulp extract (CPE) against pathogens and a probiotic (Lactobacillus acidophilus TISTR 1338) was investigated. Total phenolic compound (TPC), chlorogenic acid (CGA), caffeine (CF), total monomeric anthocyanin (TMA), antioxidant and antimicrobial activities of the CPE were determined before and after digestion. After the digestion, the TPC, CGA and CF decreased 7.9, 31.7 and 50.0%, dry weight (dw), respectively. The antioxidant activity decreased 22.6% (DPPH) and 12.4% (FRAP). The CPE inhibited Escherichia coli TISTR 780 and Staphylococcus aureus TISTR 1466 at 150 and 200 mg/mL, respectively. Both CPE and the digested CPE had no effect on the tested probiotics. These results suggest that bioactive compounds of CPE may degrade during in vitro digestion, consequently the antioxidant and antimicrobial properties. Therefore, CPE could be a potential natural antimicrobial for food industry with no effect on the probiotics.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Coffea/chemistry , Coffee/chemistry , Digestion , Plant Extracts/chemistry , Water/chemistry , Anti-Infective Agents/metabolism , Antioxidants/metabolism , Plant Extracts/metabolism , Probiotics
11.
Sci Rep ; 10(1): 6701, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317686

ABSTRACT

Saba banana, a popular fruit crop grown in Southeast Asia, is an economical source of a variety of beneficial agents. This study examined the variations in total phenolic, flavonoid, and antioxidant activities of five maturity stages of Saba banana, and their changes during simulated in vitro gastrointestinal digestion as affected by varying structural compositions. Antioxidant activities were evaluated using ferric reducing antioxidant power (FRAP), metal ion chelating (MIC) activity, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Results of DPPH and ABTS were compared in terms of TEAC (Trolox Equivalent Antioxidant Capacity) and VCEAC (Vitamin C Equivalent Antioxidant Capacity) values. Bio-properties were found to be highest in mature green stage with values slightly decreased as ripening proceeded. Simulated digestion showed a continuous increase in total phenolic with comparatively faster release in structure-less state (slurry) than samples with intact structure (cut). The trend of antioxidant activities was increased in the gastric phase and then decreased at the onset of intestinal phase, except for MIC which showed a reverse effect. Our study indicated that the bio-properties of Saba banana were affected by maturity and modifications in its physical structure and composition could influence the release behaviors of food components during simulated digestion.


Subject(s)
Digestion/physiology , Gastrointestinal Tract/physiology , Musa/chemistry , Musa/growth & development , Antioxidants/metabolism , Ascorbic Acid/metabolism , Chelating Agents/analysis , Iron/metabolism , Oxidation-Reduction , Oxygen Radical Absorbance Capacity , Phenols/analysis
12.
Sci Rep ; 10(1): 1811, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019983

ABSTRACT

The digestibility of starch in Saba banana as affected by maturity and physical properties of digesta was investigated. Five maturity stages were identified based on peel color index which also showed significant differences in physicochemical properties and starch granule morphology. The effect of physical properties of digesta was evaluated by monitoring the viscosity throughout the simulated digestion process and comparing two different physical structures of banana: (1) unhomogenized cut samples which have intact tissue structure and (2) homogenized slurry representing disrupted cellular structure. During ripening process, a decrease in starch content was noted with a concomitant formation of sugars and increasing concentration of acids. Green unripe stages showed the highest rate of starch hydrolysis in both physical structures and a decreasing trend was observed as ripening proceeded. The high digesta viscosity values of ripe stages was found to have an inhibitory effect on starch hydrolysis. Similarly, the differences in physical structure of food affected the digestive enzymes efficiency in breaking down starch. These results suggested that the physicochemical changes accompanying maturation and the physical properties (i.e. high viscosity and presence of intact cell structure) of food could significantly impact the rate of starch digestion.


Subject(s)
Digestion , Musa/chemistry , Starch/chemistry , Fruit/chemistry , Hydrolysis
13.
Food Chem ; 311: 125885, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31780224

ABSTRACT

In this study, the potential health benefits of crisphead lettuce (Lactuca sativa L.) before and after digestion were represented by the recovery, bioaccessibility, and change of bioactive compounds including total phenolic (TPC) and total flavonoids content (TFC), and bioactivities [in vitro antioxidant activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP) and metal ion chelating activity (MIC)]. The release of bioactive compounds as well as bioactivities increased during gastric and intestinal digestion for 1 h and subsequently decreased when digestion was completed. The bioaccessibility of TPC and TFC at after digestion was 56-73 and 75-79%, respectively. Among all bioactivities, crisphead lettuce showed a residual activity of ABTS (61-95%) followed by FRAP (70-86%), DPPH (24-52%) and MIC (32-73%) during the digestion. Our study suggested that crisphead lettuce maintains stability in both bioactive compounds and bioactivities during the digestion.


Subject(s)
Antioxidants/chemistry , Lactuca/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Lactuca/chemistry , Pepsin A/metabolism , Phenols/analysis , Phenols/chemistry , Spectrophotometry
14.
Food Chem ; 254: 36-46, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29548465

ABSTRACT

Two samples of trout frame protein hydrolysates were prepared by Microwave Pretreatment followed by Conventional Enzymatic hydrolysis (MPCE) and Non-Pretreated followed by Microwave-assisted Enzymatic hydrolysis (NPME), respectively, were subjected to simulated gastrointestinal digestion. Changes on degree of hydrolysis, antioxidant activity, molecular weight, and amino acid composition between undigested and after gastrointestinal digestion of peptides were investigated. Comparing to undigested peptides, a breakdown of MPCE and NPME into smaller molecules was observed. Degree of hydrolysis, ABTS+ radical scavenging activity and reducing power increased (P < 0.05) for both samples after gastrointestinal digestion. A purified peptide from GI-MPCE had two possible sequences, NGRLGYSEGVM or GNRLGYSWDD (1182.65 Da). Whereas GI-NPME had two peptides IRGPEEHMHR or RVAPEEHMHR (1261.77 Da) and SAGVPRHK or SARPRHK (962.63 Da). These results indicate that digested hydrolysates can be a rich source of antioxidants. Isolated peptides extracted from trout frame by-products could be new food ingredients used as natural antioxidants.


Subject(s)
Antioxidants/analysis , Antioxidants/isolation & purification , Biomimetics , Digestion , Microwaves , Protein Hydrolysates/analysis , Protein Hydrolysates/isolation & purification , Amino Acid Sequence , Antioxidants/chemistry , Gastrointestinal Tract/physiology , Hydrolysis , Molecular Weight , Protein Hydrolysates/chemistry
15.
Food Chem ; 215: 383-90, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27542490

ABSTRACT

The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations.


Subject(s)
Catfishes , Gelatin/metabolism , Peptide Hydrolases/metabolism , Protein Hydrolysates/metabolism , Trypsin/metabolism , Viscera/enzymology , Angiotensin-Converting Enzyme Inhibitors , Animals , Antioxidants/pharmacology , Cattle , Drug Stability , Free Radical Scavengers , Gelatin/pharmacology , Hydrolysis , Protein Hydrolysates/pharmacology
16.
Food Chem ; 192: 34-42, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304317

ABSTRACT

This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion.


Subject(s)
Bacterial Proteins/chemistry , Catfishes/metabolism , Endopeptidases/chemistry , Gelatin/chemistry , Protein Hydrolysates/chemistry , Animals , Antioxidants , Digestion
17.
Chem Cent J ; 7(1): 79, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23631530

ABSTRACT

BACKGROUND: Too many different protein and enzyme purification techniques have been reported, especially, chromatographic techniques. Apart from low recovery, these multi-step methods are complicated, time consuming, high operating cost. So, alternative beneficially methods are still required. Since, the outstanding advantages of aqueous two phase system (ATPS) such as simple, low cost, high recovery and scalable, ATPS have been used to purify various enzymes. To improve purification efficiency, parameters affected to enzyme recovery or purity was investigated. The objectives of the present study were to optimize of alkaline protease recovery from giant catfish fish viscera by using ATPS and to study of hydrolytic patterns against gelatin. RESULTS: Using 70% (w/w) crude enzyme extract (CE) in system (15% PEG2000-15% sodium citrate) provided the highest recovery, PF and KE. At unmodified pH (8.5) gave the best recovery and PF with compare to other pHs of the system. The addition of 1% (w/w) NaCl showed the recovery (64.18%), 3.33-fold and 15.09 of KE compared to the system without NaCl. After addition of 10% (w/w) sodium citrate in the second ATPS cycle, the highest protease recovery (365.53%) and PF (11.60-fold) were obtained. Thus, the top phase from the system was subjected to further studied. The protein bands with molecular weights (MWs) of 20, 24, 27, 36, 94 and 130 kDa appeared on the protein stained gel and also exhibited clear zone on casein-substrate gel electrophoresis. The ß, α1, α2 of skin gelatin extensively degraded into small molecules when treated with 10 units of the extracted alkaline protease compared to those of the level of 0.21 units of Flavourzyme. CONCLUSIONS: Repetitive ATPS is the alternative strategy to increase both recovery and purity of the alkaline protease from farmed giant catfish viscera. Extracted alkaline protease exposed very high effectiveness in gelatin hydrolysis. It is suggested that the alkaline protease from this fish viscera can further be used in protein hydrolysate production.

SELECTION OF CITATIONS
SEARCH DETAIL
...