Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Article in English | MEDLINE | ID: mdl-38898802

ABSTRACT

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

2.
Sci Rep ; 14(1): 13418, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862541

ABSTRACT

This work implements the recently developed nth state Markovian jumping particle swarm optimisation (PSO) algorithm with local search (NS-MJPSOloc) awareness method to address the economic/environmental dispatch (EED) problem. The proposed approach, known as the Non-dominated Sorting Multi-objective PSO with Local Best (NS-MJPSOloc), aims to enhance the performance of the PSO algorithm in multi-objective optimisation problems. This is achieved by redefining the concept of best local candidates within the search space of multi-objective optimisation. The NS-MJPSOloc algorithm uses an evolutionary factor-based mechanism to identify the optimum compromise solution, a Markov chain state jumping technique to control the Pareto-optimal set size, and a neighbourhood's topology (such as a ring or a star) to determine its size. Economic dispatch refers to the systematic allocation of available power resources in order to fulfill all relevant limitations and effectively meet the demand for electricity at the lowest possible operating cost. As a result of heightened public consciousness regarding environmental pollution and the implementation of clean air amendments, nations worldwide have compelled utilities to adapt their operational practises in order to comply with environmental regulations. The (NS-MJPSOloc) approach has been utilised for resolving the EED problem, including cost and emission objectives that are not commensurable. The findings illustrate the efficacy of the suggested (NS-MJPSOloc) approach in producing a collection of Pareto-optimal solutions that are evenly dispersed within a single iteration. The comparison of several approaches reveals the higher performance of the suggested (NS-MJPSOloc) in terms of the diversity of the Pareto-optimal solutions achieved. In addition, a measure of solution quality based on Pareto optimality has been incorporated. The findings validate the effectiveness of the proposed (NS-MJPSOloc) approach in addressing the multi-objective EED issue and generating a trade-off solution that is both optimal and of high quality. We observed that our approach can reduce ∼ 6.4% of fuel costs and ∼ 9.1% of computational time in comparison to the classical PSO technique. Furthermore, our method can reduce ∼ 9.4% of the emissions measured in tons per hour as compared to the PSO approach.

3.
Int Immunopharmacol ; 135: 112287, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776850

ABSTRACT

Achromobacter xylosoxidans is an aerobic, catalase-positive, non-pigment-forming, Gram-negative, and motile bacterium. It potentially causes a wide range of human infections in cystic fibrosis and non-cystic fibrosis patients. However, developing a safe preventive or therapeutic solution against A. xylosoxidans remains challenging. This study aimed to construct an epitope-based vaccine candidate using immunoinformatic techniques. A. xylosoxidans was isolated from an auto workshop in Lahore, and its identification was confirmed through 16S rRNA amplification and bioinformatic analysis. Two protein targets with GenBank accession numbers AKP90890.1 and AKP90355.1 were selected for the vaccine construct. Both proteins exhibited antigenicity, with scores of 0.757 and 0.580, respectively and the epitopes were selected based on the IC50 value using the ANN 4.0 and NN-align 2.3 epitope prediction method for MHC I and MHC II epitopes respectively and predicted epitopes were analyzed for antigenicity, allergenicity and pathogenicity. The vaccine construct demonstrated structural stability, thermostability, solubility, and hydrophilicity. The vaccine produced 250 B-memory cells per mm3 and approximately 16,000 IgM + IgG counts, indicating an effective immune response against A. xylosoxidans. Moreover, the vaccine candidate interacted stably with toll-like receptor 5, a pattern recognition receptor, with a confidence score of 0.98. These results highlight the potency of the designed vaccine candidate, suggesting its potential to withstand rigorous in vitro and in vivo clinical trials. This epitope-based vaccine could serve as the first preventive immunotherapy against A. xylosoxidans infections, addressing this bacterium's health and financial burdens. The findings demonstrate the value of employing immunoinformatic tools in vaccine development, paving the way for more precise and tailored approaches to combating microbial threats.


Subject(s)
Achromobacter denitrificans , Bacterial Vaccines , Gram-Negative Bacterial Infections , RNA, Ribosomal, 16S , Achromobacter denitrificans/immunology , Achromobacter denitrificans/genetics , Bacterial Vaccines/immunology , Humans , RNA, Ribosomal, 16S/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/microbiology , Animals , Epitopes/immunology , Computer Simulation , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Mice , Computational Biology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
4.
Front Genet ; 15: 1351710, 2024.
Article in English | MEDLINE | ID: mdl-38818041

ABSTRACT

Background: Hereditary neurodevelopmental disorders (NDDs) are prevalent in poorly prognostic pediatric diseases, but the pathogenesis of NDDs is still unclear. Irregular myelination could be one of the possible causes of NDDs. Case presentation: Here, whole exome sequencing was carried out for a consanguineous Pakistani family with NDDs to identify disease-associated variants. The co-segregation of candidate variants in the family was validated using Sanger sequencing. The potential impact of the gene on NDDs has been supported by conservation analysis, protein prediction, and expression analysis. A novel homozygous variant DOP1A(NM_001385863.1):c.2561A>G was identified. It was concluded that the missense variant might affect the protein-protein binding sites of the critical MEC interaction region of DOP1A, and DOP1A-MON2 may cause stability deficits in Golgi-endosome protein traffic. Proteolipid protein (PLP) and myelin-associate glycoprotein (MAG) could be targets of the DOP1A-MON2 Golgi-endosome traffic complex, especially during the fetal stage and the early developmental stages. This further supports the perspective that disorganized myelinogenesis due to congenital DOP1A deficiency might cause neurodevelopmental disorders (NDDs). Conclusion: Our case study revealed the potential pathway of myelinogenesis-relevant NDDs and identified DOP1A as a potential NDDs-relevant gene in humans.

5.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38812301

ABSTRACT

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Subject(s)
Bacterial Vaccines , Computational Biology , Listeria monocytogenes , Listeriosis , Molecular Docking Simulation , Vaccines, Subunit , Listeria monocytogenes/immunology , Bacterial Vaccines/immunology , Vaccines, Subunit/immunology , Listeriosis/prevention & control , Listeriosis/immunology , Listeriosis/microbiology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Humans , Epitopes/immunology , Molecular Dynamics Simulation , Animals , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Foodborne Diseases/immunology , Immunoinformatics
6.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771357

ABSTRACT

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Subject(s)
Exome Sequencing , Genetic Association Studies , Neurodevelopmental Disorders , Pedigree , Vesicular Transport Proteins , Humans , Neurodevelopmental Disorders/genetics , Male , Female , Vesicular Transport Proteins/genetics , Genetic Association Studies/methods , Child , Child, Preschool , Exome/genetics , Pakistan , Genetic Predisposition to Disease , Mutation , Cell Adhesion Molecules, Neuronal/genetics
7.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38682181

ABSTRACT

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Subject(s)
Genome, Bacterial , Kefir , Phylogeny , Probiotics , Tibet , Kefir/microbiology , Drug Resistance, Bacterial/genetics , Lactobacillus plantarum/genetics , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , CRISPR-Cas Systems
8.
Z Naturforsch C J Biosci ; 79(7-8): 221-234, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38661096

ABSTRACT

The common bacterium Escherichia coli has demonstrated potential in the field of biodegradation. E. coli is naturally capable of biodegradation because it carries a variety of enzymes that are essential for the breakdown of different substances. The degradation process is effectively catalyzed by these enzymes. The collaborative effects of E. coli's aryl sulfotransferase, alkanesulfonate moonoxygenase, and azoreductase enzymes on the breakdown of sulfur dyes from industrial effluents are investigated in this work. ExPASY ProtParam was used to confirm the stability of the enzyme, showing an instability index less than 40. We determined the maximum binding affinities of these enzymes with sulfur dye pollutants - 1-naphthalenesulfonic acid, sulfogene, sulfur green 3, sulfur red 6, sulfur red 1, sulfur yellow 2, thianthrene, thiazone, and thional - using comparative molecular docking. Significantly, the highest binding affinity was shown by monooxygenase (-12.1), whereas aryl sulfotransferase and azoreductase demonstrated significant energies of -11.8 and -11.4, respectively. The interactions between proteins and ligands in the docked complexes were examined. To evaluate their combined effects, co-expression analysis of genes and enzyme bioengineering were carried out. Using aryl sulfotransferase, alkanesulfonate monooxygenase, and azoreductase, this study investigates the enzymatic degradation of sulfur dye pollutants, thereby promoting environmentally friendly and effective sulfur dye pollutant management.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Escherichia coli , Molecular Docking Simulation , Nitroreductases , Escherichia coli/genetics , Escherichia coli/metabolism , Coloring Agents/metabolism , Coloring Agents/chemistry , Nitroreductases/metabolism , Nitroreductases/chemistry , Nitroreductases/genetics , Arylsulfotransferase/metabolism , Arylsulfotransferase/genetics , Arylsulfotransferase/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Sulfur/metabolism , Sulfur/chemistry
9.
Genet Med ; 26(4): 101057, 2024 04.
Article in English | MEDLINE | ID: mdl-38158856

ABSTRACT

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Animals , Humans , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Musculoskeletal Abnormalities/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome , Zebrafish/genetics
10.
Int J Mycobacteriol ; 12(4): 407-411, 2023.
Article in English | MEDLINE | ID: mdl-38149535

ABSTRACT

Background: Tuberculosis (TB) is the primary infectious cause of mortality worldwide. Although TB incidence and prevalence are declining, the use of immunosuppressive drugs and the growing prevalence of immunocompromising conditions such as comorbidities, malignancies, and the use of immunosuppressive agents are risk factors for disseminated TB (DTB). This study aims to identify the relevant clinical, laboratory, radiological, and histopathological features of DTB, as well as to assess the typical anatomical distributions and treatment outcomes of patients diagnosed with the disease at King Abdulaziz Medical City (KAMC). Methods: A retrospective chart review was conducted, including all patients diagnosed with miliary or DTB at KAMC with retrievable medical files. Results: The study included 55 patients, of whom 35 (63.6%) were male and the median age was 64 years old. 35 (63.6%) of the infected patients were timely diagnosed and eventually cured from the illness. The most common comorbid conditions were diabetes, chronic kidney disease, and immunocompromising conditions, which were present in 37 (67.2%), 12 (21.8%), and 11 (20%) of the patients, respectively. The most common presenting symptoms were fever and cough, present in 31 (56.3%) and 26 (47.2%) of the patients, respectively, followed by weight loss in 25 (45.4%), night sweats in 15 (27.2%), and shortness of breath in 14 (25.4%). Approximately two-thirds of the patients had pulmonary miliary TB (MTB) (38; 69.1%), followed by TB lymphadenitis (21; 38.2%), central nervous system involvement (13; 23.6%), skeletal involvement (11; 20%), gastrointestinal involvement (5; 9.1%), pleural involvement (3; 5.5%), and urogenital TB (2; 3.6%). The mortality rate was 14 (25.5%) patients. Conclusion: MTB is challenging to diagnose due to nonspecific clinical, laboratory, and imaging findings. Clinicians dealing with patients who are at risk of developing DTB should be aware of the typical presentations and abnormal clinical findings. They should also have a low threshold to initiate specific investigations for the disease, as early diagnosis and effective treatment is critical in reducing morbidity and mortality rates.


Subject(s)
Tuberculosis, Miliary , Humans , Male , Middle Aged , Female , Retrospective Studies , Saudi Arabia/epidemiology , Tertiary Care Centers , Tuberculosis, Miliary/diagnosis , Tuberculosis, Miliary/drug therapy , Tuberculosis, Miliary/epidemiology , Risk Factors
11.
Acta Biochim Pol ; 70(4): 885-889, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37883728

ABSTRACT

Myelomeningocele (MMC) is a congenital disease. For a long time, molecular mechanism of MMC, the role of folate receptor and transporter proteins remain unclear. Folate from maternal lumen to developing embryo is carried out with the help of folate transporters (SLC46A1, SLC19A1, FOLH1 and SLC25A32) and folate receptor (FOLR1, FOLR2 and FOLR3). Due to the loss of function of these important genes, complications can facilitate the risk of MMC. This study focused on the mutational analysis of FOLR1 and FOLR2 genes in children suffering from MMC. Myelomeningocele is a rare disorder so twenty blood samples from the children were collected. Primers of selected exons for FOLR1 and FOLR2 genes were designed with the help of PrimerFox software. Extracted DNA was amplified, and PCR based mutational analysis was done to check any type of mutation/SNPs in these genes. Sanger sequencing method was performed to confirm mutation in FOLR1 and FOLR2 genes. The results showed that certain environmental factors (smoking, low socio-economic status of mother bearing MMC fetus) were found to be significantly (P<0.05) associated with MMC but no mutation in the selected exons of FOLR1 and FOLR2 genes was detected. Thus, genetic variations in the folate transporter gene may have no role in the progression of MMC in the studied population.


Subject(s)
Folate Receptor 2 , Meningomyelocele , Child , Humans , Meningomyelocele/genetics , Carrier Proteins/genetics , Exons/genetics , Folic Acid/metabolism , Folate Receptor 1/genetics , Proton-Coupled Folate Transporter/genetics , Folate Receptor 2/genetics
13.
Front Microbiol ; 14: 1265188, 2023.
Article in English | MEDLINE | ID: mdl-37817753

ABSTRACT

Sufficient intake of probiotics has been shown to help in the digestion, protect the body against pathogenic microorganisms and boost the immune system. Recently, due to high prevalence of milk allergies and lactose intolerance in population, the non-dairy based probiotic alternative are becoming increasing popular. In this context, the oat milk and soya milk-based fermented products can be an ideal alternative for the development of Lactic acid bacteria bacteria based probiotics. These bacteria can not only improve the product's flavor and bioavailability but also increases its antibacterial and antioxidant capabilities due to fermentation process. The purpose of the resent work was to assess the antioxidant and probiotic properties of oat and soy milk that had been fermented with three different strains of Lactiplantibacillus plantarum (L. plantarum) including L. plantarum 12-3, L. plantarum K25, and L. plantarum YW11 isolated from Tibetan Kefir. Different validated assays were used to evaluate the probiotic properties, adhesion and survival in the digestive system (stomach, acid and bile salts resistance), antioxidant and antimicrobial activities and safety (ABTS and DPPH scavenging assays) of these strains. Results of the study showed that soya milk and oat milk fermented with L. plantarum strains possess promising probiotic, antibacterial and antioxidant properties. These results can be helpful to produce dairy-free probiotic replacements, which are beneficial for those who are unable to consume dairy products due to dietary or allergic restrictions.

14.
Front Nutr ; 10: 1273374, 2023.
Article in English | MEDLINE | ID: mdl-37810922

ABSTRACT

In order to achieve rapid detection of galactooligosaccharides (GOS), fructooligosaccharides (FOS), calcium (Ca), and vitamin C (Vc), four micronutrient components in infant formula milk powder, this study employed four methods, namely Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), Normalization (Nor), and Savitzky-Golay Smoothing (SG), to preprocess the acquired original spectra of the milk powder. Then, the Competitive Adaptive Reweighted Sampling (CARS) algorithm and Random Frog (RF) algorithm were used to extract representative characteristic wavelengths. Furthermore, Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) models were established to predict the contents of GOS, FOS, Ca, and Vc in infant formula milk powder. The results indicated that after SNV preprocessing, the original spectra of GOS and FOS could effectively extract feature wavelengths using the CARS algorithm, leading to favorable predictive results through the CARS-SVR model. Similarly, after MSC preprocessing, the original spectra of Ca and Vc could efficiently extract feature wavelengths using the CARS algorithm, resulting in optimal predictive outcomes via the CARS-SVR model. This study provides insights for the realization of online nutritional component detection and optimization control in the production process of infant formula.

15.
Acta Biochim Pol ; 70(3): 661-669, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676999

ABSTRACT

Mercury is a major pollutant in the environment due to its high concentration in the soil. In this study, a mercuric reductase was extracted from Pseudomonas aeruginosa. The sequence of the enzyme was retrieved from the literature and structural homologs were identified. The protein bonded with Mercuric compounds and their interaction was briefly studied. Autodock Vina was used to perform a molecular docking with the target protein. Results showed that the sequence consists of most of the random coil 44.74% followed by α-helix and B-turns. Moreover, the protein was predicted to have a FAD/NAD(P)-binding domain. The virulence factor prediction using different approaches of Virulentpred and VICMpred suggested that P00392 is non-toxic. Next, the mutational analyses were performed to predict the active site residues in the resulting models and to determine mutants. The results show that the enzyme is involved in the bioremediation of mercury by using in-silico techniques. Finally, molecular docking studies were conducted on the best-selected model to find the active site residues and to generate a pattern of interaction to understand the mode of action of the substrate and its catalytic activity which refers to the binding with mercury.


Subject(s)
Environmental Pollutants , Mercury , Molecular Docking Simulation , Protein Domains
16.
Ann Thorac Med ; 18(3): 124-131, 2023.
Article in English | MEDLINE | ID: mdl-37663882

ABSTRACT

BACKGROUND: Although chronic respiratory diseases are prevalent in Saudi Arabia, there are limited data on the patient burden and associated factors. The aim of this study is to identify the chronic respiratory diseases frequently admitted to pulmonary services and to determine the patient's characteristics, associated comorbidities readmission rate, and reason for a more extended stay in hospital. METHODS: A prospective study was conducted over a 5-year period at King Abdulaziz Medical City-Riyadh, Saudi Arabia, in the Pulmonary Division, between March 2015 and December 2019. Data on demographics, comorbidities, and chronic respiratory diseases were collected. RESULTS: Total patients admitted were 1315 patients, female 54.2%, the mean age was 62.4 (SD±17.6), and the ages ranged from 14 to 98 years. Overall, chronic obstructive pulmonary disease was the most common respiratory disease requiring admission (17.9%), followed by interstitial lung disease (15.8%), bronchiectasis (11.9%), and obesity hypoventilation syndrome (10.8%). The most common comorbidities were obesity (42.5%), diabetes 49.1%, and hypertension 54.9%. Only 135 (10.3%) were readmitted within 30 days posthospital discharge. Among the patients who were readmitted, 103 (76.3%) were readmitted due to issues related to previous admission diagnosis, noncompliance 75 (55.5%), social reasons, and premature discharges in 51 (37.8%) and 29 (21.5%) of the cases, respectively. The respiratory disease varied significantly by gender, age, obesity status, comorbidities, length of stay (LOS), and admissions. CONCLUSION: Chronic respiratory diseases are prevalent in our population and are mainly influenced by gender, age, obesity status, comorbidities, LOS, and admissions. Policymakers and health professionals need to recognize the burden of chronic respiratory diseases on patients and health systems and implement effective prevention programs.

17.
ACS Omega ; 8(33): 30095-30108, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636959

ABSTRACT

The degradation of organic dye pollutants is a critical environmental issue that has garnered significant attention in recent years. To address this problem, we investigated the potential of CaCrO4 chromite (CCO) as a photocatalyst for the degradation of cationic and anionic dye solutions under sunlight irradiation. CaCrO4 was synthesized via a sol-gel auto-combustion route and sintered at 900 °C. The Rietveld refined XRD profile confirmed the zircon-type structure of CaCrO4 crystallized in the tetragonal unit cell with I41/amd space group symmetry. The surface morphology of the sample was investigated by field emission scanning electron microscopy (FESEM), which revealed the polyhedral texture of the grains. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) studies were carried out to analyze the elemental composition and chemical states of the ions present in the compound. Fourier transform infrared (FT-IR) spectroscopy analysis revealed the vibrational modes corresponding to the tetrahedral and dodecahedral metal oxide bonds. The optical band gap was approximated to be in the range of 1.928 eV by using the Tauc relation. The CaCrO4 catalyst with different contents (5, 20, 35, and 50 mg) was investigated for its photocatalytic performance for the degradation of RhB dye solution under sunlight irradiation using a UV-Vis spectrometer over the experimental wavelength range of 450-600 nm. The degradation efficacy increased from 70.630 to 93.550% for 5-35 mg and then decreased to 68.720% for 50 mg in 140 min under visible light illumination. The comparative study demonstrates that a higher degradation rate was achieved for cationic than anionic dyes in the order RhB > MB > MO. The highest deterioration (93.80%) was achieved for the RhB dye in 140 min. Equilibrium and kinetic studies showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of 21.125 mg/g was observed for the catalyst concentration of 35 mg. From the cyclic test, it has been observed that the synthesized photocatalyst is structurally and morphologically stable and reusable. The radical trapping experiment demonstrated that superoxide and hydroxyl radicals were the primary species engaged in the photodegradation process. A possible mechanism for the degradation of RhB has been proposed. Hence, we conclude that CaCrO4 can be used as an efficient photocatalyst for the remediation of organic dye pollutants from the environment.

18.
Sci Rep ; 13(1): 14183, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648738

ABSTRACT

In the recent couple of years, due to the accelerated popularity of the internet, various organizations such as government offices, military, private companies, etc. use different transferring methods for exchanging their information. The Internet has various benefits and some demerits, but the primary bad mark is security of information transmission over an unreliable network, and widely uses of images. So, Steganography is the state of the art of implanting a message in the cover objects, that nobody can suspect or identify it. Therefore, in the field of cover steganography, it is very critical to track down a mechanism for concealing data by utilizing different blends of compression strategies. Amplifying the payload limit, and robustness, and working on the visual quality are the vital factors of this research to make a reliable mechanism. Different cover steganography research strategies have been recommended, and each adores its benefits and impediments but there is a need to foster some better cover steganography implements to accomplish dependability between the essential model of cover steganography. To handle these issues, in this paper we proposed a method in view of Huffman code, Least Significant Bits (LSB) based cover steganography utilizing Multi-Level Encryption (MLE) and colorless part (HC-LSBIS-MLE-AC) of the picture. It also used different substitution and flicking concepts, MLE, Magic matrix, and achromatic concepts for proving the proficiency, and significance of the method. The algorithm was also statistically investigated based on some Statistical Assessment Metrics (SAM) such as Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), Normalized Cross Correlation (NCC), Structural Similarity Index Metric (SSIM), etc. and different perspectives. The observational outcomes show the likelihood of the proposed algorithm and the capacity to give unwavering quality between security, payload, perception, computation, and temper protection.

19.
Front Microbiol ; 14: 1214478, 2023.
Article in English | MEDLINE | ID: mdl-37455721

ABSTRACT

This study aimed to investigate the intricate genetic makeup of the Lactiplantibacillus plantarum K25 strain by conducting a comprehensive analysis of comparative genomics. The results of our study demonstrate that the genome exhibits a high-level efficiency and compactness, comprising a total of 3,199 genes that encode proteins and a GC content of 43.38%. The present study elucidates the evolutionary lineage of Lactiplantibacillus plantarum strains through an analysis of the degree of gene order conservation and synteny across a range of strains, thereby underscoring their closely interrelated evolutionary trajectories. The identification of various genetic components in the K25 strain, such as bacteriocin gene clusters and prophage regions, highlights its potential utility in diverse domains, such as biotechnology and medicine. The distinctive genetic elements possess the potential to unveil innovative therapeutic and biotechnological remedies in future. This study provides a comprehensive analysis of the L. plantarum K25 strain, revealing its remarkable genomic potential and presenting novel prospects for utilizing its unique genetic features in diverse scientific fields. The present study contributes to the existing literature on Lactiplantibacillus plantarum and sets the stage for prospective investigations and practical implementations that leverage the exceptional genetic characteristics of this adap organism.

20.
Nutrients ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447285

ABSTRACT

The immune system is vital for safeguarding the human body against infections and inflammatory diseases. The role of diet and meal patterns in modulating immune function is complex, and highlighting this topic is crucial for identifying potential ways to improve immune health. In Europe, the Mediterranean diet and Western diet are the most common dietary patterns, and gaining an understanding of how they affect immune function is essential for public health. There are numerous inflammatory diseases that are observed in younger and older people. Some of the common diseases include polymyalgia rheumatica (PMR), spinal muscular atrophy (SMA), vasculitis, sarcopenia, cirrhosis, cancer, and fibromyalgia, but the main focus in this review article is on irritable bowel disease (IBD). In general, dietary choices can have an immense impact on the microbial flora of the gut in people with inflammatory diseases. The intake of Mediterranean-style foods promotes the growth of healthy bacteria that enhances the function of the immune system. On the other hand, it is mostly seen that the intake of Western-style foods leads to the growth of harmful gut bacteria that contributes to inflammation and disease development by weakening the immune system. Additionally, inflammation in the gut can impact brain function, leading to mood disorders, such as anxiety and depression. Rare inflammatory diseases, such as psoriasis and sarcoidosis, are of main interest in this article. All the above-mentioned common and rare inflammatory diseases have a certain relationship with the microbiota of the gut. The gut microbiome plays a significant role in IBD; fiber and prebiotic interventions may represent promising adjunct therapies for pediatric IBD by targeting the gut microbiome. By advancing a good overall arrangement of microorganisms in the stomach through dietary mediations, working on the side effects and alleviating of diseases might be conceivable. The gut microbiota can be affected differently by various dietary fatty acid types. There is also an involvement of genetics in the progression of IBD, such as transcriptional factors, and one gene of interest is the LCT gene, which encodes for lactase, an enzyme responsible for digesting lactose in the gut.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Irritable Bowel Syndrome , Humans , Child , Aged , Inflammation , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...