Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Health Sci (Qassim) ; 18(4): 46-57, 2024.
Article in English | MEDLINE | ID: mdl-38974651

ABSTRACT

Objective: Due to the COVID-19 pandemic, many countries around the world experienced an unprecedented increase in stress in the general population. Even after normal life has been reestablished, the new normal is punctuated by severely impacted vulnerable groups. Stress-associated symptoms display an intricate relationship with biochemical modulations, which coordinate the stress response. Identifying these biochemical factors is inherent to deciphering the mode of treatment needed to diminish the health-care gap resulting from the pandemic. Methods: We applied psychological measures using the perceived stress (PS) and COVID-19 anxiety (CA) scales and preventive health behavior (PHB) to evaluate stress in the general population. Biochemical markers of stress, that is, total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), cortisol, and C-reactive protein (CRP) were tested in the serum samples of the participants. Statistical analysis was carried out using SPSS version 22.0. Results: Stress scores for PS, CA, and PHB indicate the prevalence of moderate-to-high stress among participants, and a correlation between psychological stress and biochemical correlates, TAC, TBARS, cortisol, and CRP. Serum concentrations of TBARS, Cortisol, and CRP were found to be significantly increased, while the TAC was decreased across all stress types and levels. Our findings demonstrate a positive correlation between PS, CA, PHB TBARS, cortisol, and CRP and a strong negative correlation with TAC. Conclusion: The results of this study will help in tailoring targeted interventions and preventive regimes to mitigate COVID-19-associated anxiety and stress disorders prevailing even after the actual pandemic has subsided.

3.
Biomolecules ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785983

ABSTRACT

BACKGROUND: Peroxynitrite (ONOO-) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO- effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential blood clotting factor, from ONOO--induced damage. METHODS: Multi-approach analyses were carried out where fibrinogen was exposed to ONOO- generation while testing the efficacy of apigenin. The role of apigenin against ONOO--induced modifications in fibrinogen was investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity, carbonylation, and electrophoretic analyses. RESULTS: The findings demonstrate that apigenin significantly inhibits ONOO--induced oxidative damage in fibrinogen. ONOO- caused reduced UV absorption, which was reversed by apigenin treatment. Moreover, ONOO- diminished tryptophan and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also reduced the hydrophobicity of ONOO--damaged fibrinogen. Moreover, apigenin exhibited protective effects against ONOO--induced protein carbonylation. SDS-PAGE analyses revealed that ONOO-treatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while apigenin preserved these changes. CONCLUSIONS: This study highlights, for the first time, the role of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains (Aα, Bß, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the exposure of hydrophobic sites in fibrinogen induced by ONOO-.


Subject(s)
Apigenin , Fibrinogen , Nitrosative Stress , Peroxynitrous Acid , Fibrinogen/metabolism , Fibrinogen/chemistry , Apigenin/pharmacology , Apigenin/chemistry , Humans , Peroxynitrous Acid/chemistry , Nitrosative Stress/drug effects , Hydrophobic and Hydrophilic Interactions , Protein Carbonylation/drug effects , Tyrosine/chemistry , Tyrosine/metabolism , Oxidative Stress/drug effects
4.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338683

ABSTRACT

MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , MicroRNAs , NF-kappa B , Female , Humans , 3' Untranslated Regions , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gold , Interleukin-6/genetics , Interleukin-6/metabolism , Metal Nanoparticles/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Transcription Factor RelA/drug effects , Transcription Factor RelA/metabolism
5.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713337

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) has become a global health crisis, and the urgent need for effective treatments is evident. One potential target for COVID-19 therapeutics is the main protease (Mpro) of SARS­CoV­2, an essential enzyme for viral replication. Natural compounds have been explored as a source of potential inhibitors for Mpro due to their safety and availability. In this study, we employed a computational approach to screen a library of phytoconstituents and identified potential Mpro inhibitors based on their binding affinities and molecular interactions. The top-ranking compounds were further validated through molecular dynamics simulations (MDS) and free energy calculations. As a result of the above procedures, we identified two phytoconstituents, Khelmarin B and Neogitogenin, with appreciable binding affinity and specificity towards the Mpro binding pocket. Our results suggest that Khelmarin B and Neogitogenin could potentially serve as Mpro inhibitors and have the potential to be developed as COVID-19 therapeutics. Further experimental studies are required to confirm the efficacy and safety of these compounds.Communicated by Ramaswamy H. Sarma.

6.
Cancers (Basel) ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37568652

ABSTRACT

Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.

7.
Biology (Basel) ; 12(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37372062

ABSTRACT

OBJECTIVE: Breast cancer (BC) is the most common malignancy in females globally. Matrix metalloproteinase-9 (MMP-9) is crucial to the invasion, progression and spread of BC. Gold nanoparticles (AuNPs) have an anti-tumorigenic role, but their therapeutic role in microRNAs (miRNAs) regulation has not been explored. This study determined the potential of AuNPs against MMP-9 overexpression/production and miRNA-204-5p regulation in BC cells. METHODS: AuNPs were newly engineered, and their stability was analyzed using the zeta potential, polydispersity index, surface-plasmon-resonance peak and transmission electron microscopy. A bioinformatics algorithm was used to predict the pairing of miRNA in the 3'untranslated-region (3'UTR) of MMP-9 mRNA. TaqMan assays were carried out to quantify miRNA and mRNA, whereas MMP-9-specific immunoassays and gelatin zymography were used to determine protein secretion and activity. The binding of miRNA in MMP-9 mRNA 3'UTR was verified by luciferase reporter clone assays and transfection with anti-miRNAs. In addition, NF-κBp65 activity was determined and confirmed with parthenolide treatment. RESULTS: Engineered AuNPs were highly stable and spherical in shape, with a mean size of 28.3 nm. Tested in MCF-7 BC cells, microRNA-204-5p directly regulates MMP-9. AuNPs inhibit PMA-induced MMP-9 mRNA and protein via hsa-miR-204-5p upregulation. Anti-miR-204 transfected MCF-7 cells demonstrated enhanced MMP-9 expression (p < 0.001), while AuNPs treatment attenuated MMP-9 expression in a dose-dependent manner (p < 0.05). Moreover, AuNPs also inhibit PMA-induced NF-κBp65 activation in anti-hsa-miR-204 transfected MCF-7 cells. CONCLUSION: Engineered AuNPs were stable and non-toxic to BC cells. AuNPs inhibit PMA-induced MMP-9 expression, production and activation via NF-κBp65 deactivation and hsa-miR-204-5p upregulation. These novel therapeutic potentials of AuNPs on stimulated BC cells provide novel suggestions that AuNPs inhibit carcinogenic activity via inverse regulation of microRNAs.

8.
Contrast Media Mol Imaging ; 2022: 4202623, 2022.
Article in English | MEDLINE | ID: mdl-35965620

ABSTRACT

S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.


Subject(s)
Neoplasms , Polymorphism, Single Nucleotide , Humans , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , S100 Calcium-Binding Protein A4/genetics
9.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34947512

ABSTRACT

Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different. This gives us the need to explore the mechanism as an attractive therapeutic target to combat colon cancer cells. We have previously established the enhanced therapeutic efficacy of a newly formulated camptothecin encapsulated in ß-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF) in colon cancer cells. We furthered this study by carrying out RNA sequencing (RNA-seq) to underscore specific regulatory signatures in the CPT-CEF treated versus untreated HT29 cells. In the study, we identified 95 upregulated and 146 downregulated genes spanning cellular components and molecular and metabolic functions. We carried out extensive bioinformatics analysis to harness genes potentially involved in epigenetic modulation as either the cause or effect of metabolic rewiring exerted by CPT-CEF. Significant downregulation of 13 genes involved in the epigenetic modulation and 40 genes from core metabolism was identified. Three genes, namely, DNMT-1, POLE3, and PKM-2, were identified as the regulatory overlap between epigenetic drivers and metabolic reprogramming in HT29 cells. Based on our results, we propose a possible mechanism that intercepts the two functional axes, namely epigenetic control, and metabolic modulation via CPT-CEF in colon cancer cells, which could skew cancer-induced metabolic deregulation towards metabolic repair. Thus, the study provides avenues for further validation of transcriptomic changes affected by these deregulated genes at epigenetic level, and ultimately may be harnessed as targets for regenerating normal metabolism in colon cancer with better treatment potential, thereby providing new avenues for colon cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...