Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12711, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830908

ABSTRACT

The current research focuses on the development of Ag-ZnO heterostructures through a "bottom-up" approach involving the assembly and extraction of Aloe barbadensis Miller gel. These heterostructures composed of metals/semiconductor oxide display distinct and notable optical, electrical, magnetic, and chemical properties that are not found in single constituents and also exhibit photocatalytic applications. These synthesized heterostructures were characterized by XRD, FTIR, SEM, and UV-visible spectroscopy. The high peak intensity of the Ag/ZnO composite shows the high crystallinity. The presence of Ag-O, Zn-O, and O-H bonding is verified using FTIR analysis. SEM analysis indicated the formation of spherical shapes of Ag/ZnO heterostructures. The Zn, O, and Ag elements are further confirmed by EDX analysis. Ag-ZnO heterostructures exhibited excellent photocatalytic activity and stability against the degradation of tubantin red 8BL dye under visible light irradiation.

2.
Heliyon ; 10(4): e25591, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370257

ABSTRACT

The current study focuses the nanocomposites of Ag/WO3 was synthesized via hydrothermal method and extract of Aloe-vera gel was used. Various characterization techniques were used for the analysis of Ag/WO3 nanocomposites which includes SEM (scanning electron microscope), EDX (Energy dispersive spectroscopy), XRD (X-ray diffraction), FTIR (Fourier transform infrared), UV (ultraviolet-visible-spectroscopy) to tell about elemental composition, shape and crystalline structure, band gap, functional group. The presence of composition of elements O, W, Ag in Ag/WO3 nanocomposites was confirmed through EDX spectrum. The hexagonal crystal structure and the border peaks in Ag/WO3 nanocomposites were examined through XRD spectra. The Anti-oxidant activity was synthesized by using (DPPH) free Radical in Ag/WO3 nanocomposites. The outcomes of present study exhibited an excellent anti-oxidant activity and also indicated the reduction of stabilized free radical DPPH analysis using Aloe vera extract. The result revealed that the anti-oxidant activity of Ag/WO3 nanocomposites is essential for biomedical application and various industries.

3.
Physiol Mol Biol Plants ; 29(2): 277-288, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36875729

ABSTRACT

Application of beneficial microbes in soil is an important avenue to control plant stresses. In this study, the salinity tolerance of halotolerant bacteria (Bacillus tequilensis) was investigated and the bacterium was inoculated in the soil to mitigate salinity stress. The results revealed the highest floc yield and biofilm formation ability of B. tequilensis at 100 mM NaCl concentration. Fourier transformed infrared spectroscopy depicted the presence of carbohydrates and proteins which binds with sodium ions (Na+) and provide tolerance against salinity. Using PCR, plant growth-promoting bacterial genes viz., 1-aminocyclopropane-1-carboxylate deaminase and pyrroloquinoline quinone were successfully amplified from the genome of B. tequilensis. In the saline soil, B. tequilensis was inoculated and chickpea plants were grown. The bacterial strain improved the physiology, biochemistry, and antioxidant enzyme activities of the chickpea plant under salt stress. Plants inoculated with B. tequilensis exhibited higher relative water content, higher photosynthetic pigments, lower levels of hydrogen peroxide (H2O2) and malondialdehyde, and improved enzymatic activity for the scavenging of reactive oxygen species. The findings of this study suggest the sustainable use of B. tequilensis to mitigate the salinity stress of chickpea and other crops. This bacterium not only helps in the alleviation of the toxic effects of salt but also increases plant growth along with a reduction in crop losses due to salinity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01280-1.

4.
Microsc Res Tech ; 84(11): 2694-2701, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34002427

ABSTRACT

Aspergillus tubingensis is a causative known pathogen of various important crops, worldwide. The existing study was aimed to examine the virulence potential of A. tubingensis on resistant (NIA-Sadori) and susceptible (CIM-573) cultivars of cotton. For this purpose, both cultivars were inoculated with pathogen and altered morphology of diseased leaves was observed with light and scanning electron microscope. Disease severity was measured and estimated to be 68.7 and 27.1% in susceptible and resistant cultivars, respectively. To understand and compare defense mechanism of resistant and susceptible cultivars, different biochemical and enzymatic changes were observed. After the infection of A. tubingensis, increase in the concentrations of sugar, total protein, proline, phenol, and phenylalanine ammonia lyase (PAL) was more prominent in resistant cultivar, than the susceptible one. Moreover, due to increased number of dead cells, significantly higher electrolyte leakage was detected in susceptible cultivar. Principal component analysis confirmed the effect of A. tubingensis on growth attributes and various physiological and biochemical activities of cotton. These findings help us to suggest a possible role of proline content, protein content, and PAL activity in resistance mechanism of Cotton plant.


Subject(s)
Gossypium , Plant Leaves , Aspergillus , Virulence
5.
Microsc Res Tech ; 84(1): 101-110, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32860281

ABSTRACT

Citrus is the leading fruit crop of Pakistan and exported to different parts of the world. Due to suitable weather condition, this crop is affected by different biotic factors which seriously deteriorate its quality and quantity. During the months of November 2018 to January 2019, citrus brown rot symptoms were recurrently observed on sweet oranges in National Agricultural Research Centre (NARC), Islamabad. Causal agent of citrus brown rot was isolated, characterized, and identified as Fusarium oxysporum. For environment-friendly control of this disease, leaf extract of Azadirachta indica was used for the green synthesis of iron oxide (Fe2 O3 ) nanoparticles. These nanoparticles were characterized before their application for disease control. Fourier transform infrared spectroscopy (FTIR) of these synthesized nanoparticles described the presence of stabilizing and reducing compounds like alcohol, phenol, carboxylic acid, and alkaline and aromatic compounds. X-Ray diffraction (XRD) analysis revealed the crystalline nature and size (24 nm) of these nanoparticles. Energy dispersive X-Ray (EDX) analysis elaborated the presence of major elements in the samples. Scanning electron microscopy (SEM) confirmed the spinal shaped morphology of prepared nanoparticles. Successfully synthesized nanoparticles were evaluated for their antifungal potential. Different concentrations of Fe2 O3 nanoparticles were used and maximum mycelial inhibition was observed at 1.0 mg/ml concentration. On the basis of these findings, it could be concluded that Fe2 O3 nanoparticles, synthesized in the leaf extract of A. indica, can be successfully used for the control of brown rot of sweet oranges.


Subject(s)
Citrus , Metal Nanoparticles , Nanoparticles , Anti-Bacterial Agents , Fusarium , Microscopy, Electron, Scanning , Plant Extracts/pharmacology , Plant Leaves , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
PLoS One ; 15(2): e0228675, 2020.
Article in English | MEDLINE | ID: mdl-32049975

ABSTRACT

Aspergillus tubingensis is an important pathogen of economically important crops. Different biotic stresses strongly influence the balance of metabolites in plants. The aim of this study was to understand the function and response of resistance associated metabolites which, in turn are involved in many secondary metabolomics pathways to influence defense mechanism of cotton plant. Analysis of non-targeted metabolomics using ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) revealed abundant accumulation of key metabolites including flavonoids, phenylpropanoids, terpenoids, fatty acids and carbohydrates, in response to leaf spot of cotton. The principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and partial least squares discriminant analysis (PLS-DA) score plots illustrated the evidences of variation between two varieties of cotton under mock and pathogen inoculated treatments. Primary metabolism was affected by the up regulation of pyruvate and malate and by the accumulation of carbohydrates like cellobiose and inulobiose. Among 241 resistance related (RR) metabolites, 18 were identified as resistance related constitutive (RRC) and 223 as resistance related induced (RRI) metabolites. Several RRI metabolites, identified in the present study were the precursors for many secondary metabolic pathways. These included phenylpropanoids (stilbenes and furanocoumarin), flavonoids (phlorizin and kaempferol), alkaloids (indolizine and acetylcorynoline) and terpenoids (azelaic acid and oleanolic acid). Our results demonstrated that secondary metabolism, primary metabolism and energy metabolism were more active in resistant cultivar, as compared to sensitive cultivar. Differential protein and fatty acid metabolism was also depicted in both cultivars. Accumulation of these defense related metabolites in resistant cotton cultivar and their suppression in susceptible cotton cultivar revealed the reason of their respective tolerance and susceptibility against A. tubingensis.


Subject(s)
Aspergillus/pathogenicity , Disease Resistance , Gossypium/metabolism , Metabolome , Plant Leaves/metabolism , Coumarins/metabolism , Fatty Acids/metabolism , Flavonoids/metabolism , Gossypium/microbiology , Plant Leaves/microbiology , Stilbenes/metabolism , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL