Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Infect Dis ; 8(11): 2315-2326, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36325756

ABSTRACT

Alternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in Mycobacterium tuberculosis (Mtb). Mutations in compound 1-resistant Mtb mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC. The compounds effectively inhibited the HadAB and HadBC enzyme activities and affected mycolic acid biosynthesis in Mtb, in a concentration-dependent manner. Unlike known 3-hydroxyl-ACP dehydratase complex inhibitors of clinical significance, isoxyl and thioacetazone, 1,3-diarylpyrazolyl-acylsulfonamides did not require activation by EthA and thus are not liable to EthA-mediated resistance. Further, the crystal structure of a key compound in a complex with Mtb HadAB revealed unique binding interactions within the active site of HadAB, providing a useful tool for further structure-based optimization of the series.


Subject(s)
Mycobacterium tuberculosis , Thioacetazone , Bacterial Proteins/metabolism , Mycolic Acids/chemistry , Thioacetazone/metabolism , Thioacetazone/pharmacology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/pharmacology
2.
J Med Chem ; 64(17): 12790-12807, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34414766

ABSTRACT

Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 µM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.


Subject(s)
Antitubercular Agents/pharmacology , Cell Wall/metabolism , Mycobacterium tuberculosis/drug effects , Sulfonamides/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Drug Discovery , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry
4.
J Med Chem ; 63(21): 13013-13030, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33103428

ABSTRACT

A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.


Subject(s)
Antimalarials/chemistry , Hemeproteins/antagonists & inhibitors , Imidazoles/chemistry , Plasmodium falciparum/physiology , Protozoan Proteins/antagonists & inhibitors , Pyridines/chemistry , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Half-Life , Hemeproteins/metabolism , Imidazoles/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL