Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38272629

ABSTRACT

The Ames MPF™ is a miniaturized, microplate fluctuation format of the Ames test. It is a standardized, commercially available product which can be used to assess mutagenicity in Salmonella and E. coli strains in 384-well plates using a color change-based readout. Several peer-reviewed comparisons of the Ames MPF™ to the Ames test in Petri dishes confirmed its suitability to evaluate the mutagenic potential of a variety of test items. An international multicenter study involving seven laboratories tested six coded chemicals with this assay using five bacterial strains, as recommended by the OECD test guideline 471. The data generated by the participating laboratories was in excellent agreement (93%), and the similarity of their dose response curves, as analyzed with sophisticated statistical approaches further confirmed the suitability of the Ames MPF™ assay as an alternative to the Ames test on agar plates, but with advantages with respect to significantly reduced amount of test substance and S9 requirements, speed, hands-on time and, potentially automation.


Subject(s)
Escherichia coli , Salmonella typhimurium , Escherichia coli/genetics , Salmonella typhimurium/genetics , Mutagens/toxicity , Mutagenesis , Mutagenicity Tests/methods
2.
Part Fibre Toxicol ; 20(1): 27, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443115

ABSTRACT

BACKGROUND: Edible gold (Au) is commonly used as a food additive (E175 in EU) for confectionery and cake decorations, coatings and in beverages. Food-grade gold is most often composed of thin Au sheets or flakes exhibiting micro- and nanometric dimensions in their thickness. Concerns about the impact of mineral particles used as food additives on human health are increasing with respect to the particular physico-chemical properties of nanosized particles, which enable them to cross biological barriers and interact with various body cell compartments. In this study, male and female mice were exposed daily to E175 or an Au nanomaterial (Ref-Au) incorporated into food at relevant human dose for 90 days in order to determine the potential toxicity of edible gold. RESULTS: E175 or Ref-Au exposure in mice did not induce any histomorphological damage of the liver, spleen or intestine, nor any genotoxic effects in the colon and liver despite an apparent higher intestinal absorption level of Au particles in mice exposed to Ref-Au compared to the E175 food additive. No changes in the intestinal microbiota were reported after treatment with Ref-Au, regardless of sex. In contrast, after E175 exposure, an increase in the Firmicutes/Bacteroidetes ratio and in the abundance of Proteobacteria were observed in females, while a decrease in the production of short-chain fatty acids occurred in both sexes. Moreover, increased production of IL-6, TNFα and IL-1ß was observed in the colon of female mice at the end of the 90-day exposure to E175, whereas, decreased IL-6, IL-1ß, IL-17 and TGFß levels were found in the male colon. CONCLUSIONS: These results revealed that a 90-day exposure to E175 added to the diet alters the gut microbiota and intestinal immune response in a sex-dependent manner in mice. Within the dose range of human exposure to E175, these alterations remained low in both sexes and mostly appeared to be nontoxic. However, at the higher dose, the observed gut dysbiosis and the intestinal low-grade inflammation in female mice could favour the occurrence of metabolic disorders supporting the establishment of toxic reference values for the safe use of gold as food additive.


Subject(s)
Gastrointestinal Microbiome , Humans , Mice , Male , Female , Animals , Gold , Interleukin-6 , Immune System , Food Additives/toxicity
3.
Environ Mol Mutagen ; 64(2): 105-122, 2023 02.
Article in English | MEDLINE | ID: mdl-36495195

ABSTRACT

Genotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugenicity) have been limited to dichotomous hazard classification, while other toxicity endpoints are assessed through quantitative determination of points-of-departures (PODs) for setting exposure limits. The more recent higher-throughput in vitro genotoxicity assays, many of which also provide mechanistic information, offer a powerful approach for determining defined PODs for potency ranking and risk assessment. In order to obtain relevant human dose context from the in vitro assays, in vitro to in vivo extrapolation (IVIVE) models are required to determine what dose would elicit a concentration in the body demonstrated to be genotoxic using in vitro assays. Previous work has demonstrated that application of IVIVE models to in vitro bioactivity data can provide PODs that are protective of human health, but there has been no evaluation of how these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Technical Committee, under the Health and Environmental Sciences Institute, conducted a case study on 31 reference chemicals to evaluate the performance of IVIVE application to genotoxicity data. The results demonstrate that for most chemicals considered here (20/31), the PODs derived from in vitro data and IVIVE are health protective relative to in vivo PODs from animal studies. PODs were also protective by assay target: mutations (8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that this novel testing strategy could enhance prioritization, rapid screening, and risk assessment of genotoxic chemicals.


Subject(s)
DNA Damage , Mutagens , Animals , Humans , Mutation , Mutagens/toxicity , Risk Assessment , Mutagenicity Tests/methods
4.
Article in English | MEDLINE | ID: mdl-32265046

ABSTRACT

Human risk assessment of genotoxic chemicals is an important area of research. However, the specificity of in vitro mammalian genotoxicity assays is sometime low, as they yield to misleading positive results that are not observe in in vivo studies. Apoptosis can be a confounding factor in the interpretation of the results. Recently, a new strategy for genotoxicity screening, based on the combined analysis of phosphorylated histones H2AX (γH2AX) and H3 (pH3), was proposed to discriminate efficiently aneugenic from clastogenic compounds. However, γH2AX biomarker could also be induce by apoptosis. The aim of the present study was to investigate the specificity of this genotoxic biomarker. For this purpose, we analyzed 26 compounds inducing apoptosis by different mechanism of action, with the γH2AX assay in three human cell lines after 24 h treatment. Most of the tested chemicals were negative in the assay, whatever the cell line tested. The few compounds that generated positive data have also been report positive in other genotoxicity assays. The data presented here demonstrate that the γH2AX assay is not vulnerable to the generation of misleading positive results by apoptosis inducers. Currently, no formal guidelines have been approve for the γH2AX assay for regular genotoxicity studies, but we suggest that this biomarker could be used as a new standard genotoxicity assay.


Subject(s)
Apoptosis/drug effects , Biomarkers, Tumor/genetics , Blotting, Western/methods , Histones/genetics , Micronuclei, Chromosome-Defective/drug effects , Mutagens/toxicity , Apoptosis/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression , Hep G2 Cells , Histones/metabolism , Humans , Micronucleus Tests , Mutagenicity Tests , Mutagens/classification , Phosphorylation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
Biochem Pharmacol ; 137: 113-124, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28461126

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.


Subject(s)
Benzo(a)pyrene/toxicity , DNA Damage/drug effects , Mutagenesis/drug effects , T-Lymphocytes/drug effects , Cells, Cultured , DNA Damage/physiology , Dose-Response Relationship, Drug , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mutagenesis/physiology , Mutagenicity Tests/methods , T-Lymphocytes/metabolism
6.
Mutagenesis ; 31(1): 83-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26243742

ABSTRACT

In a previous study, we validated an in vitro genotoxicity assay based on γH2AX quantification using the In-Cell Western (ICW) method in HepG2 cells. The assay demonstrated high sensitivity and specificity but failed to detect genotoxicity for few compounds that require specific metabolic bioactivation not sufficiently covered by HepG2 cells. The aim of the present study was to assess γH2AX ICW sensitivity using a broader range of genotoxic molecules with HepG2 cells and three additional human cell lines with distinct biotransformation properties: two cell lines expressing some phase I and II bioactivation capabilities (LS-174T and Hep3B), and one with poor general bioactivation properties (ACHN). We evaluated the four cell lines by testing 24 compounds recommended by European Centre for the Validation of Alternative Methods and a set of 24 additional chemicals with different mode of genotoxic action (MOA) (aneugenicity, DNA adducts formation, induction of oxidative stress), including some known to require specific cytochrome P450 metabolic bioactivation. Results for the 48 compounds tested showed that the γH2AX ICW assay was more sensitive with LS-174T and HepG2 cells than with Hep3B or ACHN cell lines. Among the 38 compounds tested with positive or equivocal carcinogenicity data, 36 (95%) showed a positive genotoxic response with the γH2AX ICW assay compared to only 27 (71%) using the Ames assay. We confirm that the γH2AX ICW assay on HepG2 cells, without an exogenous metabolic activation system, may be a suitable test to predict the in vivo genotoxicity of chemicals with different genotoxic MOA. Moreover, the use of the ACHN cell line in combination with LS-174T and HepG2 cells may permit in many cases to discriminate direct from bioactivated genotoxins. Overall, our results confirm the high sensitivity of the γH2AX ICW assay which, in turn, should reduce the number of animals used for genotoxicity assessment.


Subject(s)
Cell Line, Tumor , DNA Damage , Histones/analysis , Mutagenicity Tests/methods , Mutagens/toxicity , Biotransformation , Humans , Mutagens/metabolism , Oxidative Stress/drug effects
7.
Arch Toxicol ; 90(8): 1983-95, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26404763

ABSTRACT

The in vitro micronucleus assay is broadly used, but is not per se able to discriminate aneugenic from clastogenic compounds, and cytotoxicity can be a confounding factor. In vitro genotoxicity assays generally rely on cell lines with limited metabolic capabilities. Recently, the use of histone H2AX and H3 phosphorylation markers (γH2AX and p-H3) was proposed to discriminate aneugenic from clastogenic chemicals. The aim of the present study was to develop a new genotoxic screening strategy based on the use of the γH2AX and p-H3 biomarkers in combination with cell lines with distinct biotransformation properties. First, we tested a training set of 20 model chemicals comprised of 10 aneugens, five clastogens and five cytotoxics on three human cell lines (HepG2, LS-174T and ACHN). Our data confirm the robustness of these two biomarkers to discriminate efficiently clastogens, aneugens and misleading cytotoxic chemicals in HepG2 cells. Aneugenic compounds induced either an increase or a decrease in p-H3 depending on their mode of action. Clastogens induced γH2AX, and cytotoxic compounds generated a marked decrease in these two biomarkers. Moreover, the use of different cell lines permits to discriminate direct from bioactivated genotoxins without the need of an exogenous metabolic activation system. Finally, we further evaluated this strategy using a test set of 13 chemicals with controversial genotoxic potential. The resulting data demonstrate that the combined analysis of γH2AX and p-H3 is an efficient strategy. Notably, we demonstrated that three compounds (fisetin, hydroquinone and okadaic acid) display both aneugenic and clastogenic properties.


Subject(s)
Histones/analysis , Mutagenicity Tests/methods , Mutagens/toxicity , Aneugens/metabolism , Aneugens/toxicity , Biomarkers/analysis , Biomarkers/metabolism , Biotransformation , Cell Line, Tumor , Cell Survival/drug effects , Data Interpretation, Statistical , Histones/metabolism , Humans , Mutagens/metabolism , Phosphorylation
8.
Environ Mol Mutagen ; 54(9): 737-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24105934

ABSTRACT

In vitro genotoxicity tests used in regulatory toxicology studies are sensitive, but the occurrence of irrelevant positive results is high compared with carcinogenicity studies in rodents. Current in vitro genotoxicity tests are also often limited by relatively low throughput. The aim of this study was to validate an in vitro genotoxic assay in a 96-well plate format that allows the simultaneous examination of cytotoxicity and genotoxicity. The test is based on the quantification of the phosphorylation of the histone H2AX (γH2AX), which reflects a global genotoxic insult, using the In-Cell Western technique. The assay was evaluated on HepG2 cells by testing a list of 61 compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), whose genotoxic potential has already been characterized. The γH2AX assay on HepG2 cell line was highly sensitive: 75% of the genotoxic compounds gave a positive result, and specific: 90-100% of nongenotoxic compounds gave negative results. Compared with the micronucleus genotoxicity assay using the same cell line and test compounds, the γH2AX assay was more sensitive and specific. In sum, the high-throughput γH2AX assay described here can accurately detect simultaneously the genotoxic and the cytotoxic potential of compounds with different modes of mutagenic action, notably those who required metabolic activation. The use of this assay in the early discovery phase of drug development may prove to be a valuable way to assess the genotoxic potential of xenobiotics.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Damage/drug effects , High-Throughput Screening Assays , Histones/metabolism , Micronucleus Tests/methods , Mutagenicity Tests/methods , Biotransformation/drug effects , Blotting, Western , Hep G2 Cells , Humans , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...