Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 129(19): 191601, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399741

ABSTRACT

Investigating principles for storage of quantum information at finite temperature with minimal need for active error correction is an active area of research. We bear upon this question in two-dimensional holographic conformal field theories via the quantum null energy condition that we have shown earlier to implement the restrictions imposed by quantum thermodynamics on such many-body systems. We study an explicit encoding of a logical qubit into two similar chirally propagating excitations of finite von Neumann entropy on a finite temperature background whose erasure can be implemented by an appropriate inhomogeneous and instantaneous energy-momentum inflow from an infinite energy memoryless bath due to which the system transits to a thermal state. Holographically, these fast erasure processes can be depicted by generalized AdS-Vaidya geometries described previously in which no assumption of specific form of bulk matter is needed. We show that the quantum null energy condition gives analytic results for the minimal finite temperature needed for the deletion which is larger than the initial background temperature in consistency with Landauer's principle. In particular, we find a simple expression for the minimum final temperature needed for the erasure of a large number of encoding qubits. We also find that if the encoding qubits are localized over an interval shorter than a specific localization length, then the fast erasure process is impossible, and furthermore this localization length is the largest for an optimal amount of encoding qubits determined by the central charge. We estimate the optimal encoding qubits for realistic protection against fast erasure. We discuss possible generalizations of our study for novel constructions of fault-tolerant quantum gates operating at finite temperature.

2.
Phys Rev Lett ; 128(19): 191602, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35622045

ABSTRACT

The quantum null energy condition (QNEC) is a lower bound on the energy-momentum tensor in terms of the variation of the entanglement entropy of a subregion along a null direction. To gain insights into quantum thermodynamics of many-body systems, we study if the QNEC restricts irreversible entropy production in quenches driven by energy-momentum inflow from an infinite memoryless bath in two-dimensional holographic theories. We find that an increase in both entropy and temperature, as implied by the Clausius inequality of classical thermodynamics, is necessary but not sufficient to not violate QNEC in quenches leading to transitions between thermal states with momentums that are dual to Banados-Teitelboim-Zanelli geometries. For an arbitrary initial state, we can determine the lower and upper bounds on the increase of entropy (temperature) for a fixed increase in temperature (entropy). Our results provide explicit instances of quantum lower and upper bounds on irreversible entropy production whose existence has been established in literature. We also find monotonic behavior of the nonsaturation of the QNEC with time after a quench, and analytically determine their asymptotic values. Our study shows that the entanglement entropy of an interval of length l always thermalizes in time l/2 with an exponent 3/2. Furthermore, we determine the coefficient of initial quadratic growth of entanglement analytically for any l, and show that the slope of the asymptotic ballistic growth of entanglement for a semi-infinite interval is twice the difference of the entropy densities of the final and initial states. We determine explicit upper and lower bounds on these rates of growth of entanglement.

SELECTION OF CITATIONS
SEARCH DETAIL