Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 14655, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038704

ABSTRACT

Iodine is an essential micronutrient for humans, but its role in plant physiology was debated for nearly a century. Recently its functional involvement in plant nutrition and stress-protection collected the first experimental evidence. This study wanted to examine in depth the involvement of iodine in tomato plant nutrition, also evaluating its potential on salt stress tolerance. To this end, iodine was administered at dosages effective for micronutrients to plants grown in different experimental systems (growth chamber and greenhouse), alone or in presence of a mild-moderate NaCl-salinity stress. Plant vegetative fitness, fruit yield and quality, biochemical parameters and transcriptional activity of selected stress-responsive genes were evaluated. In unstressed plants, iodine increased plant growth and fruit yield, as well as some fruit qualitative parameters. In presence of salt stress, iodine mitigated some of the negative effects observed, according to the iodine/NaCl concentrations used. Some fruit parameters and the expressions of the stress marker genes analyzed were affected by the treatments, explaining, at least in part, the increased plant tolerance to the salinity. This study thus reconfirms the functional involvement of iodine in plant nutrition and offers evidence towards the use of minute amounts of it as a beneficial nutrient for crop production.


Subject(s)
Iodine , Solanum lycopersicum , Fruit/genetics , Humans , Iodine/metabolism , Solanum lycopersicum/metabolism , Micronutrients/metabolism , Salinity , Sodium Chloride/pharmacology
2.
Biomedicines ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36009367

ABSTRACT

For centuries, the cannabis plant has been used as a source of food, fiber, and medicine. Recently, scientific interest in cannabis has increased considerably, as its bioactive compounds have shown promising potential in the treatment of numerous musculoskeletal and neurological diseases in humans. However, the mechanisms that underlie its possible effects on neurodevelopment and nervous-system functioning remain poorly understood and need to be further investigated. Although the bulk of research on cannabis and cannabinoids is based on in vitro or rodent models, the zebrafish has now emerged as a powerful in vivo model for drug-screening studies and translational research. We here review the available literature on the use of cannabis/cannabinoids in zebrafish, and particularly in zebrafish models of neurological disorders. A critical analysis suggests that zebrafish could serve as an experimental tool for testing the bioactivity of cannabinoids, and they could thus provide important insights into the safety and efficacy of different cannabis-extract-based products. The review showed that zebrafish exhibit similar behaviors to rodents following cannabinoid exposure. The authors stress the importance of analyzing the full spectrum of naturally occurring cannabinoids, rather than just the main ones, THC and CBD, and they offer some pointers on performing behavioral analysis in zebrafish.

3.
J Exp Bot ; 73(1): 292-306, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34436573

ABSTRACT

Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.


Subject(s)
Chenopodium quinoa , Salt Tolerance , Hydrogen Peroxide , Plant Roots , Salinity , Salt-Tolerant Plants
4.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34959625

ABSTRACT

Historically, humans have been using Cannabis sativa for both recreational and medical purposes. Nowadays, cannabis-based products have gained scientific interest due to their beneficial effects on several syndromes and illnesses. The biological activity of cannabinoids is essentially due to the interaction with the endocannabinoid system, and zebrafish (Danio rerio) is a very well-known and powerful in vivo model for studying such specific interactions. The aim of the study was to investigate the effects of different doses of a Cannabis sativa whole extract [dissolved in dimethyl sulfoxide (DMSO)] on zebrafish eggs' hatchability, embryo post-hatching survival, larvae locomotion behavior and mRNA gene expression. The results showed the absence of toxicity, and no significant differences were observed between treatments for both embryo hatching and survival rate. In addition, larvae exposed to the cannabis extract at the highest dose [containing 1.73 nM and 22.3 nM of ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively] showed an increased locomotion compared to the control and DMSO treated groups. Moreover, qRT-PCR analysis showed that the highest dosage of cannabis induced an over-expression of cnr1 and cnr2 cannabinoid receptors. In conclusion, the exposition of zebrafish larvae to the whole extract of Cannabis sativa showed no negative effects on embryo development and survival and enhanced the larvae's locomotor performances. These findings may open up possible Cannabis sativa applications in human pharmacology as well as in other animal sectors.

5.
Physiol Plant ; 173(4): 1392-1420, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33847396

ABSTRACT

Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC). Previous work showed high salt tolerance, but low EBC density was associated with an improved response in the early phases of salinity stress, mediated by tissue-tolerance traits mainly in roots. We compared the transcript profiling of two quinoa genotypes with contrasting salt tolerance patterning to identify the candidate genes involved in the differentially early response among genotypes. The transcriptome profiling, supported by in vitro physiological analyses, provided insights into the early-stage molecular mechanisms, both at the shoot and root level, based on the sensitive/tolerance traits. Results showed the presence of numerous differentially expressed genes among genotypes, tissues, and treatments, with genes involved in hormonal and stress response upregulated mainly in the sensitive genotype, suggesting that tolerance may be correlated to restricted changes in gene expression, at least after a short salt stress. These data, showing constitutive differences between the two genotypes, represent a solid basis for further studies to characterize the salt tolerance traits. Additionally, new information provided by this work might be useful for the development of plant breeding or genome engineering programs in quinoa.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Gene Expression Regulation, Plant , Genotype , Salinity , Salt Stress , Salt Tolerance/genetics , Salt-Tolerant Plants , Stress, Physiological/genetics
6.
Front Plant Sci ; 12: 616868, 2021.
Article in English | MEDLINE | ID: mdl-33679830

ABSTRACT

Little is known about the role of iodine in plant physiology. We evaluated the impact of low concentrations of iodine on the phenotype, transcriptome and proteome of Arabidopsis thaliana. Our experiments showed that removal of iodine from the nutrition solution compromises plant growth, and restoring it in micromolar concentrations is beneficial for biomass accumulation and leads to early flowering. In addition, iodine treatments specifically regulate the expression of several genes, mostly involved in the plant defence response, suggesting that iodine may protect against both biotic and abiotic stress. Finally, we demonstrated iodine organification in proteins. Our bioinformatic analysis of proteomic data revealed that iodinated proteins identified in the shoots are mainly associated with the chloroplast and are functionally involved in photosynthetic processes, whereas those in the roots mostly belong and/or are related to the action of various peroxidases. These results suggest the functional involvement of iodine in plant nutrition.

8.
PLoS One ; 14(12): e0226559, 2019.
Article in English | MEDLINE | ID: mdl-31841559

ABSTRACT

Iodine biofortification has been gaining interest in recent years as a sustainable and innovative approach to eradicate iodine deficiency disorders. Studying the impact of iodine biofortification on plant phenotype, biochemical and physiological parameters is crucial to leverage the expertise and best practices for the agro-food industry and human health. The aim of this study was to evaluate iodine biofortification on the main quantitative and qualitative traits of basil (Ocimum basilicum L.) plants cultivated both in open field and in growth chamber. The impact of KI and KIO3 treatments was evaluated on biomass production, as well as on the synthesis of phenolic compounds, especially rosmarinic acid and other caffeic acid derivatives, and on the essential oil (EO) composition. These compounds are typically accumulated in basil leaves and strongly contribute to the plant nutraceutical value and aroma. In open field, the use of increasing concentrations of both iodine salts gradually enhanced iodine accumulation in leaves, also determining an increase of the antioxidant power, total phenolics, rosmarinic acid and cinnamic acid accumulation. The composition of EO was only slightly affected by the treatments, as all the samples were characterized by a linalool chemotype and a minor alteration in their relative content was observed. A growth chamber experiment was performed to test EO variation in controlled conditions, broadening the range of iodine concentrations. In this case, plant chemotype was significantly affected by the treatments and large EO variability was observed, suggesting that iodine form and concentration can potentially influence the EO composition but that in open field this effect is overcome by environmental factors.


Subject(s)
Biofortification/methods , Iodine/pharmacology , Ocimum basilicum/drug effects , Ocimum basilicum/metabolism , Oils, Volatile/metabolism , Phenols/metabolism , Acyclic Monoterpenes/analysis , Acyclic Monoterpenes/metabolism , Agriculture/methods , Biomass , Cinnamates/analysis , Cinnamates/metabolism , Deficiency Diseases/prevention & control , Depsides/analysis , Depsides/metabolism , Environment, Controlled , Humans , Iodine/analysis , Iodine/deficiency , Ocimum basilicum/chemistry , Oils, Volatile/analysis , Phenols/analysis , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Oils/analysis , Plant Oils/metabolism , Rosmarinic Acid
9.
Front Plant Sci ; 10: 1494, 2019.
Article in English | MEDLINE | ID: mdl-31921224

ABSTRACT

Iodine deficiency is a serious world-wide public health problem, as it is responsible for mental retardation and other diseases. The use of iodine-biofortified vegetables represents a strategic alternative to iodine enriched salt for people with a low sodium diet. However, at high concentrations iodine can be toxic to plants. Therefore, research on plant iodine toxicity is fundamental for the development of appropriate biofortification protocols. In this work, we compared two cultivars of sweet basil (Ocimum basilicum L.) with different iodine tolerance: "Tigullio," less tolerant, with green leaves, and "Red Rubin," more tolerant and with purple leaves. Four greenhouse hydroponic experiments were conducted in spring and in summer with different concentrations of iodine in the nutrient solution (0.1, 10, 50, 100, and 200 µM), supplied as potassium iodide (KI) or potassium iodate (KIO3). Plant growth was not affected either by 10 µM KI or by 100 µM KIO3, while KI concentrations higher than 50 µM significantly reduced leaf area, total plant dry matter and plant height. The severity of symptoms increased with time depending on the cultivar and the form of iodine applied. Growth inhibition by toxic iodine concentrations was more severe in "Tigullio" than in "Red Rubin," and KI was much more phytotoxic than KIO3. Leaf iodine concentration increased with the iodine concentration in the nutrient solution in both varieties, while the total antioxidant power was generally higher in the purple variety. In both basil cultivars, a strong negative correlation was found between the photosynthesis and the leaf iodine content, with significant differences between the regression lines for "Tigullio" and "Red Rubin." In conclusion, the greater tolerance to iodine of the "Red Rubin" variety was associated with the ability to withstand higher concentrations of iodine in leaf tissues, rather than to a reduced accumulation of this element in the leaves. The high phenolic content of "Red Rubin" could contribute to the iodine tolerance of this purple cultivar.

10.
PLoS One ; 13(10): e0205650, 2018.
Article in English | MEDLINE | ID: mdl-30308054

ABSTRACT

Shelf life is the time a product can be stored without losing its qualitative characteristics. It represents one of the most critical quality traits for food products, particularly for fleshy fruits, including tomatoes. Tomatoes' shelf life is usually shortened due to fast over-ripening caused by several different factors, among which changes in temperature, respiration and pathogen exposure. Although tomatoes usually do not contain anthocyanins, varieties enriched in these antioxidant compounds have been recently developed. The anthocyanin-rich tomatoes have been shown to possess a significantly extended shelf life by delayed over-ripening and reduction of the susceptibility to certain pathogens. In the present work, we compared different conditions of postharvest storage of anthocyanin-rich tomato fruits with the aim to understand if the added value represented by the presence of the anthocyanins in the fruit peel can be affected in postharvest. For this purpose we used an anthocyanin-enriched tomato line derived from conventional breeding and took into consideration different light and temperature conditions, known to affect fruit physiology during postharvest as well as anthocyanin production. Several quality traits related to the fruit ripening were measured, including anthocyanin and carotenoid content, pH, titratable acidity and total soluble solids. In this way we identified that the most suitable fruit storage and postharvest anthocyanin accumulation were obtained through exposure to cool temperature (12° C), particularly in the presence of light. Under these parameters, tomato fruits showed increased anthocyanin content and unchanged flavour-related features up to three weeks after harvesting.


Subject(s)
Anthocyanins/metabolism , Food Storage , Solanum lycopersicum/standards , Anthocyanins/analysis , Food Quality , Food Storage/standards , Fruit/chemistry , Fruit/standards , Hydrogen-Ion Concentration , Light , Solanum lycopersicum/chemistry , Temperature
11.
Curr Opin Biotechnol ; 44: 16-26, 2017 04.
Article in English | MEDLINE | ID: mdl-27835794

ABSTRACT

Iodine deficiency is a widespread micronutrient malnutrition problem, and the addition of iodine to table salt represents the most common prophylaxis tool. The biofortification of crops with iodine is a recent strategy to further enrich the human diet with a potentially cost-effective, well accepted and bioavailable iodine source. Understanding how iodine functions in higher plants is key to establishing suitable biofortification approaches. This review describes the current knowledge regarding iodine physiology in higher plants, and provides updates on recent agronomic and metabolic engineering strategies of biofortification. Whereas the direct administration of iodine is effective to increase the iodine content in many plant species, a more sophisticated genetic engineering approach seems to be necessary for the iodine biofortification of some important staple crops.


Subject(s)
Agriculture/methods , Biofortification , Crops, Agricultural/metabolism , Iodine/pharmacology , Metabolic Engineering/methods , Biological Availability , Humans
12.
PLoS One ; 10(8): e0136365, 2015.
Article in English | MEDLINE | ID: mdl-26308527

ABSTRACT

Anthocyanins are water-soluble polyphenolic compounds with a high nutraceutical value. Despite the fact that cultivated tomato varieties do not accumulate anthocyanins in the fruit, the biosynthetic pathway can be activated in the vegetative organs by several environmental stimuli. Little is known about the molecular mechanisms regulating anthocyanin synthesis in tomato. Here, we carried out a molecular and functional characterization of two genes, SlAN2 and SlANT1, encoding two R2R3-MYB transcription factors. We show that both can induce ectopic anthocyanin synthesis in transgenic tomato lines, including the fruit. However, only SlAN2 acts as a positive regulator of anthocyanin synthesis in vegetative tissues under high light or low temperature conditions.


Subject(s)
Anthocyanins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Cold Temperature , Genotype , Light , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Phenotype , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
13.
New Phytol ; 200(3): 650-655, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24102530

ABSTRACT

Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life.


Subject(s)
Anthocyanins/metabolism , Botrytis , Food Microbiology , Food Preservation , Fruit/metabolism , Genotype , Solanum lycopersicum/metabolism , Alleles , Anthocyanins/genetics , Breeding , Food Storage , Fruit/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plants, Genetically Modified
14.
Front Plant Sci ; 4: 205, 2013.
Article in English | MEDLINE | ID: mdl-23818889

ABSTRACT

IODINE IS A TRACE ELEMENT THAT IS FUNDAMENTAL FOR HUMAN HEALTH: its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however, plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition. A greenhouse pot experiment was carried out to evaluate the possibility of biofortifying tomato fruits with iodine. Increasing concentrations of iodine supplied as KI or KIO3 were administered to plants as root treatments and the iodine accumulation in fruits was measured. The influences of the soil organic matter content or the nitrate level in the nutritive solution were analyzed. Finally, yield and qualitative properties of the biofortified tomatoes were considered, as well as the possible influence of fruit storage and processing on the iodine content. Results showed that the use of both the iodized salts induced a significant increase in the fruit's iodine content in doses that did not affect plant growth and development. The final levels ranged from a few mg up to 10 mg iodine kg (-) (1) fruit fresh weight and are more than adequate for a biofortification program, since 150 µg iodine per day is the recommended dietary allowance for adults. In general, the iodine treatments scarcely affected fruit appearance and quality, even with the highest concentrations applied. In contrast, the use of KI in plants fertilized with low doses of nitrate induced moderate phytotoxicity symptoms. Organic matter-rich soils improved the plant's health and production, with only mild reductions in iodine stored in the fruits. Finally, a short period of storage at room temperature or a 30-min boiling treatment did not reduce the iodine content in the fruits, if the peel was maintained. All these results suggest that tomato is a particularly suitable crop for iodine biofortification programs.

15.
Sci Rep ; 2: 338, 2012.
Article in English | MEDLINE | ID: mdl-22468225

ABSTRACT

Plants are a poor source of iodine, an essential micronutrient for human health. Several attempts of iodine biofortification of crops have been carried out, but the scarce knowledge on the physiology of iodine in plants makes results often contradictory and not generalizable. In this work, we used a molecular approach to investigate how the ability of a plant to accumulate iodine can be influenced by different mechanisms. In particular, we demonstrated that the iodine content in Arabidopsis thaliana can be increased either by facilitating its uptake with the overexpression of the human sodium-iodide symporter (NIS) or through the reduction of its volatilization by knocking-out HOL-1, a halide methyltransferase. Our experiments show that the iodine content in plants results from a balance between intake and retention. A correct manipulation of this mechanism could improve iodine biofortification of crops and prevent the release of the ozone layer-threatening methyl iodide into the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL