Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952150

ABSTRACT

Inhibition of lipid synthesis in sebocytes is essential for acne treatments. The effects of natural product-derived substances on lipid synthesis are unknown. This study investigated the effects of water extract of Mangifera indica leaves (WEML) on lipid synthesis in human sebocytes. Sebocyte differentiation in low serum conditions increased lipid accumulation and proliferator-activated receptor γ expression. WEML treatment significantly inhibited lipid accumulation and adipogenic mRNA expression in sebocytes. Mangiferin, a bioactive compound in WEML, also reduced lipid accumulation and adipogenic mRNA expression via the AKT pathway. Thus, WEML and mangiferin effectively inhibit lipid synthesis in sebocytes, showing promise for acne treatment.

2.
Diabetol Metab Syndr ; 16(1): 149, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970135

ABSTRACT

Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy.

3.
Anim Cells Syst (Seoul) ; 28(1): 315-325, 2024.
Article in English | MEDLINE | ID: mdl-38895161

ABSTRACT

Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.

4.
Front Public Health ; 12: 1386495, 2024.
Article in English | MEDLINE | ID: mdl-38827618

ABSTRACT

Introduction: Mitigating the spread of infectious diseases is of paramount concern for societal safety, necessitating the development of effective intervention measures. Epidemic simulation is widely used to evaluate the efficacy of such measures, but realistic simulation environments are crucial for meaningful insights. Despite the common use of contact-tracing data to construct realistic networks, they have inherent limitations. This study explores reconstructing simulation networks using link prediction methods as an alternative approach. Methods: The primary objective of this study is to assess the effectiveness of intervention measures on the reconstructed network, focusing on the 2015 MERS-CoV outbreak in South Korea. Contact-tracing data were acquired, and simulation networks were reconstructed using the graph autoencoder (GAE)-based link prediction method. A scale-free (SF) network was employed for comparison purposes. Epidemic simulations were conducted to evaluate three intervention strategies: Mass Quarantine (MQ), Isolation, and Isolation combined with Acquaintance Quarantine (AQ + Isolation). Results: Simulation results showed that AQ + Isolation was the most effective intervention on the GAE network, resulting in consistent epidemic curves due to high clustering coefficients. Conversely, MQ and AQ + Isolation were highly effective on the SF network, attributed to its low clustering coefficient and intervention sensitivity. Isolation alone exhibited reduced effectiveness. These findings emphasize the significant impact of network structure on intervention outcomes and suggest a potential overestimation of effectiveness in SF networks. Additionally, they highlight the complementary use of link prediction methods. Discussion: This innovative methodology provides inspiration for enhancing simulation environments in future endeavors. It also offers valuable insights for informing public health decision-making processes, emphasizing the importance of realistic simulation environments and the potential of link prediction methods.


Subject(s)
Contact Tracing , Coronavirus Infections , Disease Outbreaks , Middle East Respiratory Syndrome Coronavirus , Humans , Republic of Korea/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/prevention & control , Coronavirus Infections/epidemiology , Contact Tracing/methods , Disease Outbreaks/prevention & control , Quarantine , Computer Simulation
5.
Br J Pharmacol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925168

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model. EXPERIMENTAL APPROACH: Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae. KEY RESULTS: PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction. CONCLUSION AND IMPLICATIONS: This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.

6.
Article in English | MEDLINE | ID: mdl-38791855

ABSTRACT

This study aimed to identify the time to diagnosis among COVID-19 patients and factors associated with delayed diagnosis (DD). Data from COVID-19 patients in Gangwon, South Korea, diagnosed between 22 February 2020 and 29 January 2022, were analyzed, excluding asymptomatic cases and those who underwent mandatory testing. DD was defined as a period exceeding 2 or more days from symptom recognition to COVID-19 diagnosis. Univariate analysis was performed to investigate the demographic characteristics, COVID-19 symptoms, and underlying medical conditions associated with DD, followed by multivariate logistic regression analysis for significant variables. Among 2683 patients, 584 (21.8%) were diagnosed within a day of symptom onset. DD rates were lower in patients with febrile symptoms but higher among those with cough, myalgia, or anosmia/ageusia. High-risk underlying medical conditions were not significantly associated with DD. Older age groups, the Wonju medical service area, time of diagnosis between November 2020 and July 2021, symptom onset on nonworkdays, and individuals in nonwhite collar sectors were significantly associated with increased DD risks. These findings were consistent in the sensitivity analysis. This study underscores the need for enhanced promotion and system adjustments to ensure prompt testing upon symptom recognition.


Subject(s)
COVID-19 , Delayed Diagnosis , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Republic of Korea/epidemiology , Male , Female , Delayed Diagnosis/statistics & numerical data , Middle Aged , Adult , Aged , Young Adult , Adolescent , Risk Factors , SARS-CoV-2 , Aged, 80 and over
7.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734221

ABSTRACT

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Subject(s)
Cytoplasmic Granules , DNA Helicases , Green Fluorescent Proteins , Keratinocytes , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Humans , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Arsenites/toxicity , Skin/drug effects , Skin/metabolism , Gene Knock-In Techniques , Genes, Reporter/drug effects , Phenols/toxicity , HaCaT Cells , Phosphorylation , Benzhydryl Compounds/toxicity , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Toxicity Tests/methods
8.
Int J Stem Cells ; 17(2): 147-157, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38777828

ABSTRACT

The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.

9.
Chemosphere ; 361: 142485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821132

ABSTRACT

Acute stress caused by short-term exposure to deleterious chemicals can induce the aggregation of RNA-binding proteins (RBPs) in the cytosol and the formation of stress granules (SGs). The cytoplasmic RBP, Ras GTPase-activating protein-binding protein 1 (G3BP1) is a critical organizer of SG, and its aggregation is considered a hallmark of cellular stress. However, assembly of SG is a highly dynamic process that involves RBPs; hence, existing methods based on fixation processes or overexpression of RBPs exhibit limited efficacy in detecting the assembly of SG under stress conditions. In this study, we established a G3BP1- Green fluorescent protein (GFP) reporter protein in a human neuroblastoma cell line to overcome these limitations. GFP was introduced into the G3BP1 genomic sequence via homologous recombination to generate a G3BP1-GFP fusion protein and further analyze the aggregation processes. We validated the assembly of SG under stress conditions using the G3BP1-GFP reporter system. Additionally, this system supported the evaluation of bisphenol A-induced SG response in the established human neuroblastoma cell line. In conclusion, the established G3BP1-GFP reporter system enables us to monitor the assembly of the SG complex in a human neuroblastoma cell line in real time and can serve as an efficient tool for assessing potential neurotoxicity associated with short-term exposure to chemicals.


Subject(s)
DNA Helicases , Green Fluorescent Proteins , Neuroblastoma , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Humans , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Cell Line, Tumor , RNA Helicases/genetics , RNA Helicases/metabolism , Neuroblastoma/pathology , DNA Helicases/metabolism , Stress Granules , Stress, Physiological , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
10.
J Adv Res ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718895

ABSTRACT

INTRODUCTION: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE: To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS: Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS: During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS: Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.

11.
Heliyon ; 10(10): e31223, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803854

ABSTRACT

Meditation has been integral to human culture for millennia, deeply rooted in various spiritual and contemplative traditions. While the field of contemplative science has made significant steps toward understanding the effects of meditation on health and well-being, there has been little study of advanced meditative states, including those achieved through intense concentration and absorption. We refer to these types of states as advanced concentrative absorption meditation (ACAM), characterized by absorption with the meditation object leading to states of heightened attention, clarity, energy, effortlessness, and bliss. This review focuses on a type of ACAM known as jhana (ACAM-J) due to its well-documented history, systematic practice approach, recurring phenomenological themes, and growing popularity among contemplative scientists and more generally in media and society. ACAM-J encompasses eight layers of deep concentration, awareness, and internal experiences. Here, we describe the phenomenology of ACAM-J and present evidence from phenomenological and neuroscientific studies that highlight their potential applications in contemplative practices, psychological sciences, and therapeutics. We additionally propose theoretical ACAM-J frameworks grounded in current cognitive neuroscientific understanding of meditation and ancient contemplative traditions. We aim to stimulate further research on ACAM more broadly, encompassing advanced meditation including meditative development and meditative endpoints. Studying advanced meditation including ACAM, and specific practices such as ACAM-J, can potentially revolutionize our understanding of consciousness and applications for mental health.

12.
J Anal Toxicol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780234

ABSTRACT

Kratom is a natural psychoactive product known primarily in Southeast Asia, including Thailand, Malaysia etc. It is also known as krathom, kakuam, ithang, thom (Thailand), biak-biak, ketum (Malaysia) and mambog (Philippines), and is sometimes used as an opium substitute. It is stimulant at doses of 1-5g, analgesic at doses of 5-15g, and euphoric and sedative at doses above 15g. Mitragynine is the most abundant indole compound in kratom (Mitragyna speciosa) and is metabolized in humans to 7-hydroxymitragynine, the more active metabolite. Adverse effects include seizures, nausea, vomiting, diarrhoea, tachycardia, restlessness, tremors, hallucinations and death. There are few studies on the analytical method for the detection of mitragynine and 7-hydroxymitragynine in hair. Therefore, this study proposes a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the analysis of kratom in hair. Hair samples were first weighed to approximately 10 mg and washed with methanol. Then the washed hair samples were cut into pieces and incubated in methanol with stirring and heating (16h/38℃). Extracts were then analysed by LC-MS-MS. This method was validated by determining the limit of detection (LOD), limit of quantification (LOQ), linearity, intra- and inter-day accuracy and precision, recovery and matrix effects. The intra- and inter-day precision (CV%) and accuracy (bias%) were within ±20%, which was considered acceptable. Using this newly developed LC-MS-MS method, the simultaneous detection of mitragynine and 7-hydroxymitragynine in six authentic hair samples was achieved to provide the direct evidence of kratom use in the past. Mitragynine concentrations ranged from 16.0 to 2,067 pg/mg (mean 905.3 pg/mg), and 7-hydroxymitragynine concentrations ranged from 0.34 to 15 pg/mg (mean 7.4 pg/mg) in six authentic hair samples from kratom abusers. This may be due to the higher sensitivity of the LOD in this study, with values of 0.05 pg/mg for mitragynine and 0.2 pg/mg for 7-hydroxymitragynine in hair, respectively.

13.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38749417

ABSTRACT

Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.


Subject(s)
Coculture Techniques , Induced Pluripotent Stem Cells , Macrophages , Organoids , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Cell Differentiation/drug effects , Liver/cytology , Liver/drug effects , Models, Biological , Animals
14.
Saf Health Work ; 15(1): 42-52, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38496282

ABSTRACT

Background: The lack of headforms that accurately reflect the head characteristics of Koreans and the demographic composition of the Korean population can lead to inadequate FFR testing and reduced effectiveness of FFRs. Method: Direct measurements of 5,110 individuals and 3D measurements of 2,044 individuals, aged between 9 and 69 years, were sampled from the data pool of Size Korea surveys based on the age and gender ratios of the Korean resident demographics. Seven head dimensions were selected based on the ISO 16976-2, availability of Size Korea measurements, and their relevance to the fit performance of FFRs. A principal component analysis (PCA) was performed using the direct measurements to extract the main factors explaining the head characteristics and then the main factors were standardized and remapped to 3D measurements, creating five size categories representing Korean head shapes. Lastly, representative 3D headforms were constructed by averaging five head shapes for each size category. Results: The study identified two main factors explaining Korean head characteristics by the PCA procedure specified in ISO 16976-2 and developed five representative headforms reflecting the anthropometric features of Korean heads: medium, small, large, short & wide, and long & narrow. Conclusion: This study developed representative headforms tailored to the Korean population for conducting total inward leakage (TIL) tests on filtering facepiece respirators (FFRs). The representative headforms can be used for TIL testing by employing robotic headforms to enhance the performance of FFRs for the Korean target population.

15.
Sci Rep ; 14(1): 4483, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396060

ABSTRACT

This study investigates whether simultaneous high-definition transcranial direct current stimulation (HD-tDCS) enhances the effects of robot-assisted gait training in stroke patients. Twenty-four participants were randomly allocated to either the robot-assisted gait training with real HD-tDCS group (real HD-tDCS group) or robot-assisted gait training with sham HD-tDCS group (sham HD-tDCS group). Over four weeks, both groups completed 10 sessions. The 10 Meter Walk Test, Timed Up and Go, Functional Ambulation Category, Functional Reach Test, Berg Balance Scale, Dynamic Gait Index, Fugl-Meyer Assessment, and Korean version of the Modified Barthel Index were conducted before, immediately after, and one month after the intervention. The real HD-tDCS group showed significant improvements in the 10 Meter Walk Test, Timed Up and Go, Functional Reach Test, and Berg Balance Scale immediately and one month after the intervention, compared with before the intervention. Significant improvements in the Dynamic Gait Index and Fugl-Meyer Assessment were also observed immediately after the intervention. The sham HD-tDCS group showed no significant improvements in any of the tests. Application of HD-tDCS during robot-assisted gait training has a positive effect on gait and physical function in chronic stroke patients, ensuring long-term training effects. Our results suggest the effectiveness of HD-tDCS as a complementary tool to enhance robotic gait rehabilitation therapy in chronic stroke patients.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Robotics/methods , Stroke Rehabilitation/methods , Stroke/therapy , Gait/physiology , Treatment Outcome
16.
J Endod ; 50(2): 213-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924940

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate the torsional resistance, cyclic fatigue resistance, and bending stiffness of nickel-titanium (NiTi) file systems with different heat treatments and cross-sectional designs. METHODS: WaveOne Primary treated with memory-triple (MT) heat treatment (WOMT) was compared with WaveOne Primary (WO) and WaveOne Gold Primary (WOG). Torsional resistance test was performed using a customized device, and the distortion angle, ultimate strength, and toughness were evaluated. For cyclic fatigue resistance test, the instruments were reciprocated with continuous 4 mm up-and-down movement until fracture in a customized device, and the time to fracture was compared. Fracture surfaces of each group were examined under the scanning electron microscope. Bending stiffness was measured using a custom-made device. The results were analyzed using one-way analysis of variance and the Tukey's post hoc comparison at a significance level of 95%. RESULTS: WOMT showed higher ultimate strength and toughness than the other systems (P < .05). WOMT also showed highest cyclic fatigue resistance among the tested groups (P < .05). WO had the highest bending stiffness than others, whereas WOMT had a larger residual angle than others (P < .05). CONCLUSIONS: This new MT heat treatment technique makes NiTi file more flexible and improves its mechanical properties. In addition, the effect of heat treatment on flexibility was found to be more significant than that of the cross-sectional area.


Subject(s)
Alloys , Hot Temperature , Titanium , Nickel , Dental Instruments , Equipment Design , Root Canal Preparation , Stress, Mechanical , Materials Testing , Torsion, Mechanical
17.
Ecotoxicol Environ Saf ; 269: 115755, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38039847

ABSTRACT

Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.


Subject(s)
DNA Helicases , Lung , RNA Helicases , Stress Granules , Humans , DNA Helicases/metabolism , Lung/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Stress Granules/metabolism , Green Fluorescent Proteins , Genes, Reporter
18.
ACS Omega ; 8(47): 44637-44646, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046302

ABSTRACT

The hydrophobicity and aggregation of zein, a biopolymer, limit its application as an effective drug delivery carrier. Here, we developed a zein-induced polyelectrolyte (ZiP) complex and investigated its efficiency in delivering 1% hydrolyzed ginseng saponin, a compound K-rich fraction derived from the root of Panax ginseng. The ZiP complex was formulated by incorporating the self-assembled amphiphilic prolamin zein into the aqueous phase. The physical properties, encapsulation efficiency, and stability of the encapsulation system at room temperature (25 °C) and 45 °C were assessed. The effects of different ratios of zein, pullulan, and pectin on the formation of the ZiP complex, the encapsulation stability, and the cellular efficacy of ZiP complexes were also assessed. The ZiP complex was surface-modified with hydrophilic pullulan and pectin polysaccharides in a mass ratio of 1:2:0.2 through electrostatic interactions. The primary hydrophilic modification of the ZiP complex was formed by the adsorption of pullulan, which enhanced the encapsulation stability. The outermost hydrophilic layer comprised the gelling polysaccharide pectin, which further improved the stability of the macro-sized oil-encapsulated complex, reaching sizes over 50 µm. The size of the ZiP complex increased when the concentration of pectin or the total content of the ZiP complex increased to 2:4:0.2. Compound K was successfully encapsulated with a particle size of 294.8 nm and an encapsulation efficiency of 99.6%. The ZiP complex demonstrated stability at high temperatures and long-term stability of the encapsulated saponin over 24 weeks. These results revealed the potency of ZiP complexes that enhance the in vivo absorption of phytochemicals as effective drug delivery carriers that can overcome the limitations in industrial formulation development as a delivery system.

19.
Sci Rep ; 13(1): 20280, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985799

ABSTRACT

This study investigated associations between weekend catch-up sleep (WCUS) and health-related quality of life (HRQoL) in 15,837 participants from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey. We categorized WCUS durations into four groups: none (≤ 0 h [h]), short (> 0 h, ≤ 1 h), medium (> 1 h, ≤ 2 h), and long (> 2 h), and performed complex samples logistic regression and likelihood ratio χ2 test. The study found significant associations in women for the European Quality of Life-5 Dimensions (EQ-5D) index and three EQ-5D subdomains (self-care, usual activities, and anxiety/depression) with the WCUS durations, but no significant association in men. Compared to the non-WCUS, the short or medium WCUS was positively associated with the EQ-5D index and EQ-5D subdomains (usual activities and anxiety/depression) in women, while the long WCUS significantly reduced the quality of life in the self-care domain. In an additional subgroup analysis by age, middle-aged and elderly women had a more noticeable effect of WCUS on HRQoL than young women, and the short or medium WCUS improved HRQoL in middle-aged and elderly women in general. Therefore, we recommend appropriate WCUS durations to improve HRQoL, considering both gender and age.


Subject(s)
Depression , Quality of Life , Male , Aged , Middle Aged , Humans , Female , Nutrition Surveys , Sex Factors , Sleep , Surveys and Questionnaires , Health Status
20.
Cancer Cell Int ; 23(1): 249, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875914

ABSTRACT

Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...