Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Exp Mol Med ; 55(12): 2475-2497, 2023 12.
Article En | MEDLINE | ID: mdl-38036730

Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and ß-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.


Histone-Lysine N-Methyltransferase , Histones , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism
2.
Int J Biol Sci ; 19(12): 3640-3660, 2023.
Article En | MEDLINE | ID: mdl-37564212

Both AP-1 and PRMT1 are vital molecules in variety of cellular progresssion, but the interaction between these proteins in the context of cellular functions is less clear. Gastric cancer (GC) is one of the pernicious diseases worldwide. An in-depth understanding of the molecular mode of action underlying gastric tumorigenesis is still elusive. In this study, we found that PRMT1 directly interacts with c-Fos and enhances AP-1 activation. PRMT1-mediated arginine methylation (mono- and dimethylation) of c-Fos synergistically enhances c-Fos-mediated AP-1 liveliness and consequently increases c-Fos protein stabilization. Consistent with this finding, PRMT1 knockdown decreases the protein level of c-Fos. We discovered that the c-Fos protein undergoes autophagic degradation and found that PRMT1-mediated methylation at R287 protects c-Fos from autophagosomal degradation and is linked to clinicopathologic variables as well as prognosis in stomach tumor. Together, our data demonstrate that PRMT1-mediated c-Fos protein stabilization promotes gastric tumorigenesis. We contend that targeting this modification could constitute a new therapeutic strategy in gastric cancer.


Proto-Oncogene Proteins c-fos , Stomach Neoplasms , Humans , Methylation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Stomach Neoplasms/genetics , Transcription Factor AP-1/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Arginine , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Am J Chin Med ; 51(6): 1361-1384, 2023.
Article En | MEDLINE | ID: mdl-37489113

Few studies have reported the therapeutic effects of Korean red ginseng (KRG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the positive effects of KRG on other viruses have been reported and the effects of KRG on pulmonary inflammatory diseases have also been studied. Therefore, this study investigated the therapeutic effects of KRG-water extract (KRG-WE) in a pseudo-type SARS-CoV-2 (PSV)-induced lung injury model. Constructing the pseudovirus, human angiotensin-converting enzyme 2 (hACE2) transgenic mice were infected via intranasal injection that had been orally administered with KRG-WE for six weeks. After 7-days post infection (dpi), the antiviral effects of KRG-WE were confirmed, followed by real-time polymerase chain reaction (PCR), western blot analysis, flow cytometric analysis, and an enzyme-linked immunoassay (ELISA). KRG-WE significantly inhibited an increase in immunoglobulin caused by PSV. Furthermore, KRG-WE effectively suppressed alveolar macrophages (AMs) inside the lungs and helped normalize the population of other immune cells. In addition, virus-induced gene expression and inflammatory signals such as nuclear factor-kappa B and other upstream molecules were downregulated. Moreover, KRG-WE also normalized gene expression and protein activity in the spleen. In conclusion, KRG-WE reduced AMs, normalized the immune response, and decreased the expression of inflammatory genes and activation of signaling pathway phosphorylation, thereby exhibiting anti-inflammatory effects and attenuating lung damage.


COVID-19 , Panax , Humans , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2 , Inflammation/drug therapy , Immunity
4.
Plants (Basel) ; 12(5)2023 Mar 03.
Article En | MEDLINE | ID: mdl-36904025

Ardisia silvestris is a traditional medicinal herb used in Vietnam and several other countries. However, the skin-protective properties of A. silvestris ethanol extract (As-EE) have not been evaluated. Human keratinocytes form the outermost barrier of the skin and are the main target of ultraviolet (UV) radiation. UV exposure causes skin photoaging via the production of reactive oxygen species. Protection from photoaging is thus a key component of dermatological and cosmetic products. In this research, we found that As-EE can prevent UV-induced skin aging and cell death as well as enhance the barrier effect of the skin. First, the radical-scavenging ability of As-EE was checked using DPPH, ABTS, TPC, CUPRAC, and FRAP assays, and a 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay was used to examine cytotoxicity. Reporter gene assays were used to determine the doses that affect skin-barrier-related genes. A luciferase assay was used to identify possible transcription factors. The anti-photoaging mechanism of As-EE was investigated by determining correlated signaling pathways using immunoblotting analyses. As-EE had no harmful effects on HaCaT cells, according to our findings, and As-EE revealed moderate radical-scavenging ability. With high-performance liquid chromatography (HPLC) analysis, rutin was found to be one of the major components. In addition, As-EE enhanced the expression levels of hyaluronic acid synthase-1 and occludin in HaCaT cells. Moreover, As-EE dose-dependently up-regulated the production of occludin and transglutaminase-1 after suppression caused by UVB blocking the activator protein-1 signaling pathway, in particular, the extracellular response kinase and c-Jun N-terminal kinase. Our findings suggest that As-EE may have anti-photoaging effects by regulating mitogen-activated protein kinase, which is good news for the cosmetics and dermatology sectors.

5.
Phytomedicine ; 109: 154573, 2023 Jan.
Article En | MEDLINE | ID: mdl-36610128

BACKGROUND: Beauvericin (BEA) is a depsipeptide with antimicrobial, anti-inflammatory, and anti-cancer activities isolated from Beauveria bassiana. However, little is understood on its anti-cancer activities and mechanism. PURPOSE: Aim of this study was to explore the anti-cancer activity of BEA and its underlying molecular mechanism to provide a theoretical basis for its role as a candidate natural drug in cancer diseases. STUDY DESIGN: Various cancer cells such as C6 glioma, U251, MDA-MB-231, HeLa, HCT-15, LoVo cells, and HEK293T cells were used to the anti-cancer activity of BEA. METHODS: To evaluate the anti-cancer activity of BEA, cell viability test (MTT assay), morphological change check, confocal microscopy, actin polymerization assay, flow cytometry, and Western blotting analysis. To check the target enzyme of BEA, overexpression and site-directed mutagenesis was employed. RESULTS: BEA inhibited the viability of cancer cells including C6, MDA-MB-231, HeLa, HCT-15, LoVo, and U251 cells. Treatment of BEA in C6 glioma cells induced cell membrane blebbing and apoptosis. Caspase-3 and -9 were dose-dependently activated by BEA, and the mRNA expression of Bcl-2 was inhibited by BEA. According to confocal microscopy, actin polymerization and actin-actin interaction were interrupted by BEA in C6 cells. BEA regulated the apoptosis of C6 cells depending on the protein phosphorylation of Src and Signal transducer and activator of transcription (STAT3). Moreover, c-terminal amino acids in Src directly interacted with BEA in C6 cells, and the binding of Src and BEA suppressed the kinase activity of Src. CONCLUSIONS: These results suggest that BEA may be a critical candidate or substitute drug for cancer treatment via suppression of the Src/STAT3 pathway.


Actins , Antineoplastic Agents , Depsipeptides , Neoplasms , Humans , Actins/metabolism , Apoptosis , Cell Line, Tumor , Depsipeptides/pharmacology , HEK293 Cells , Phosphorylation , Polymerization , STAT3 Transcription Factor/metabolism , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy
6.
Am J Chin Med ; 51(1): 205-221, 2023.
Article En | MEDLINE | ID: mdl-36408728

20(S)-protopanaxadiol (PPD), a metabolite of Panax ginseng, has multiple pharmacological properties. However, the effects of PPD against human gastric cancer have not been elucidated. Our purpose in this study was to investigate if PPD has anticancer effects against human gastric cancer in vitro. Cell viability, migration, clone formation, and invasion were assessed to explore the effects of PPD on cancer cells. PI and annexin V staining as well as immunoblotting were employed to determine if PPD-induced apoptosis and autophagy of MKN1 and MKN45 cells. The target of PPD was identified using immunoblotting, overexpression analysis, and flow cytometric analysis. PPD exhibited significantly suppressed cell viability, migration, colony formation, and invasion. Phosphorylation of Src and its down-stream effectors were inhibited by PPD. PPD-enhanced apoptosis and autophagy in a dose- and time-dependent manner by inhibiting Src. Collectively, our results demonstrate that PPD induces apoptosis and autophagy in gastric cancer cells in vitro by inhibiting Src.


Ginsenosides , Panax , Sapogenins , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Apoptosis , Sapogenins/pharmacology , Autophagy , Ginsenosides/pharmacology , Cell Line, Tumor
7.
Toxicol Rep ; 9: 1883-1893, 2022.
Article En | MEDLINE | ID: mdl-36518371

Sodium orthovanadate (Na3VO4) is an inhibitor of phosphatases that acts as a phosphate analog and is being developed as an anti-diabetes drug. Phosphatases play important roles in inflammatory signal pathways by modulating the removal of phosphate moieties of key signaling proteins. However, the role of protein phosphatases on the inflammatory response has not been fully established. In this study, we investigated how phosphatases can control the inflammatory response using Na3VO4 in LPS-stimulated RAW264.7 cells and explored the molecular mechanisms by NO assay, mRNA analysis, immunoblotting analysis, kinase assay, luciferase reporter gene assay, and mutation strategy. Na3VO4 decreased the release of nitric oxide (NO) and suppressed the expression of pro-inflammatory genes at the transcriptional level, without cytotoxicity. The translocation of nuclear factor (NF)-κB subunits into the nucleus and the level of p-IκBα were reduced by Na3VO4, as was IKKß activity. Na3VO4 inhibited NF-κB-Luc activity under AKT1/2 and IKKß overexpression. However, the inhibitory effect of Na3VO4 against NF-κB-Luc was not observed in the group overexpressing both AKT2 and IKKß-M10, a mutant in which the 10 serine residues in the autophosphorylated region of the C-terminal were replaced with alanine. Na3VO4 directly decreased the activity of protein phosphatase 1α (PP1α) and protein phosphatase 2 A (PP2A) by 95%. Phosphatase inhibition by Na3VO4 also selectively suppressed AKT-IKKß signaling by directly blocking the phosphatase activity of PP1 and PP2A, consequently down-regulating NF-κB and inflammatory gene expression. Therefore, these results suggest that vanadium compounds including Na3VO4 can be developed as anti-inflammatory drugs.

8.
Plants (Basel) ; 11(24)2022 Dec 16.
Article En | MEDLINE | ID: mdl-36559672

Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study was to investigate in vitro and in vivo the anti-inflammatory effects of a methanol extract of Guettarda crispiflora Vahl (Gc-ME). To determine the anti-inflammatory activity of Gc-ME, lipopolysaccharide (LPS)-, poly(I:C)-, or Pam3CSK4-treated RAW264.7 cells, HCl/EtOH- and LPS-treated mice were employed for in vitro and in vivo tests. LPS-induced nitric oxide production in RAW264.7 cells was determined by Griess assays and cytokine gene expression in LPS-activated RAW264.7 cells, confirmed by RT- and real-time PCR. Transcriptional activation was evaluated by luciferase reporter gene assay. Target protein validation was assessed by Western blot analysis and cellular thermal shift assays (CETSA) with LPS-treated RAW264.7 and gene-transfected HEK293 cells. Using both a HCl/EtOH-induced gastritis model and an LPS-induced lung injury model, inflammatory states were checked by scoring or evaluating gastric lesions, lung edema, and lung histology. Phytochemical fingerprinting of Gc-ME was observed by using liquid chromatography-mass spectrometry. Nitric oxide production induced by LPS and Pam3CSK4 in RAW264.7 cells was revealed to be reduced by Gc-ME. The LPS-induced upregulation of iNOS, COX-2, IL-6, and IL-1ß was also suppressed by Gc-ME treatment. Gc-ME downregulated the promotor activities of AP-1 and NF-κB triggered by MyD88- and TRIF induction. Upstream signaling proteins for NF-κB activation, namely, p-p50, p-p65, p-IκBα, and p-Src were all downregulated by Ch-EE. Moreover, Src was revealed to be directly targeted by Gc-ME. This extract, orally treated strongly, attenuated the inflammatory symptoms in HCl/EtOH-treated stomachs and LPS-treated lungs. Therefore, these results strongly imply that Guettarda crispiflora can be developed as a promising anti-inflammatory remedy with Src-suppressive properties.

9.
Int J Immunopathol Pharmacol ; 36: 3946320221133018, 2022.
Article En | MEDLINE | ID: mdl-36214175

OBJECTIVE: Inflammation, a vital innate immune response against infection and injury, is mediated by macrophages. Spleen tyrosine kinase (Syk) regulates inflammatory responses in macrophages; however, its role and underlying mechanisms are uncertain. MATERIALS AND METHODS: In this study, overexpression and knockout (KO) cell preparations, phagocytosis analysis, confocal microscopy, reactive oxygen species (ROS) determination, mRNA analysis, and immunoprecipitation/western blotting analyses were used to investigate the role of Syk in phagocytosis and its underlying mechanisms in macrophages during inflammatory responses. RESULTS: Syk inhibition by Syk KO, Syk-specific small interfering RNA (siSyk), and a selective Syk inhibitor (piceatannol) significantly reduced the phagocytic activity of RAW264.7 cells. Syk inhibition also decreased cytochrome c generation by inhibiting ROS-generating enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and ROS scavenging suppressed the phagocytic activity of RAW264.7 cells. LPS induced the tyrosine nitration (N-Tyr) of suppressor of cytokine signaling 1 (SOCS1) through Syk-induced ROS generation in RAW264.7 cells. On the other hand, ROS scavenging suppressed the N-Tyr of SOCS1 and phagocytosis. Moreover, SOCS1 overexpression decreased phagocytic activity, and SOCS1 inhibition increased the phagocytic activity of RAW264.7 cells. CONCLUSION: These results suggest that Syk plays a critical role in the phagocytic activity of macrophages by inducing ROS generation and suppressing SOCS1 through SOCS1 nitration during inflammatory responses.


Cytochromes c , Lipopolysaccharides , Cytokines , Lipopolysaccharides/pharmacology , Macrophages , Phagocytosis , RNA, Messenger , RNA, Small Interfering , Reactive Oxygen Species , Syk Kinase , Tyrosine
10.
Phytomedicine ; 105: 154338, 2022 Oct.
Article En | MEDLINE | ID: mdl-35921773

BACKGROUND: Callerya atropurpurea is a traditional plant in a tropical zone discovered to have anti-inflammatory functions. PURPOSE: we want to investigate the mechanism related to anti-inflammation of C. atropurpurea ethanol extract (Ca-EE) both in vitro and in vivo. STUDY DESIGN: Murine macrophage cells and mouse models for gastritis and septic shock were conducted to evaluate the abilities of Ca-EE in anti-inflammation. METHODS: Ca-EE was tested by HPLC and LC-MS/MS. NO outcome was checked by Griess reagent test. Cell viabilities were evaluated using MTT assay. Inflammatory cytokines were determined via RT-PCR and ELISA. The mechanism of Ca-EE in anti-inflammation was investigated by luciferase reporter gene assay and immunoblot in transcription level and protein level respectively. Gastric injury and septic shock administrated with Ca-EE were studied by H&E, PCR, and immunoblot. RESULTS: Ca-EE significantly decreased LPS-induced NO production, but hardly stimulated the expression of NO itself. It not only showed no cytotoxicity, but also protected cells from LPS damage. Moreover, Ca-EE decreased TLR4 expression, altered MyD88 recruitment and TRAF6, and suppressed the phospho-Src/PI3K/AKT. Ca-EE inhibited downstream signaling P38, JNK and NF-κB. Finally, Ca-EE alleviated HCl/EtOH-induced gastritis and LPS/poly (I:C)-induced septic shock through the previously mentioned signaling cascades. CONCLUSION: Ca-EE exhibited an integrated and promising mechanism against TLR4-related inflammation, which shows potential for treating gastritis, septic shock, and other inflammatory diseases.


Fabaceae , Gastritis , Shock, Septic , Animals , Anti-Inflammatory Agents , Chromatography, Liquid , Ethanol , Inflammation , Lipopolysaccharides , Mice , Myeloid Differentiation Factor 88 , NF-kappa B , Phosphatidylinositol 3-Kinases , Plant Extracts , Tandem Mass Spectrometry , Toll-Like Receptor 4
11.
Cancer Lett ; 544: 215803, 2022 09 28.
Article En | MEDLINE | ID: mdl-35753528

The importance of methylation in the tumorigenic responses of nonhistone proteins, such as TP53, PTEN, RB1, AKT, and STAT3, has been emphasized in numerous studies. In parallel, the corresponding nonhistone protein methyltransferases have been acknowledged in the pathophysiology of cancer. Thus, this study aimed to explore the pathological role of a nonhistone methyltransferase in gastric cancer (GC), identify nonhistone substrate protein, and understand the underlying mechanism. Interestingly, among the 24 methyltransferases and methyltransferase family 16 (MTF16) proteins, EEF1AKMT3 (METTL21B) expression was prominently lower in GC tissues than in normal adjacent tissues and was associated with a worse prognosis. In addition, EEF1AKMT3-knockdown induced gastric tumor invasiveness and migration. Through gain and loss-of-function studies, mass spectrometry analysis, RNA-seq, and phospho-antibody array, we identified EEF1AKMT3 as a novel tumor-suppressive methyltransferase that catalyzes the monomethylation of MAP2K7 (MKK7) at K296, thereby decreasing the phosphorylation, ubiquitination, and degradation of TP53. Furthermore, EEF1AKMT3, p-MAP2K7, and TP53 protein levels were positively correlated in GC tissues. Collectively, our results delineate the tumor-suppressive function of the EEF1AKMT3/MAP2K7/TP53 signaling axis and suggest the dysregulation of the signaling axis as potential targeted therapy in GC.


Stomach Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Kinase 7/metabolism , Methyltransferases/metabolism , Neoplasm Invasiveness , Stomach Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Plants (Basel) ; 11(10)2022 May 13.
Article En | MEDLINE | ID: mdl-35631731

Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1ß, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.

13.
BMB Rep ; 55(8): 389-394, 2022 Aug.
Article En | MEDLINE | ID: mdl-35410635

In particular, the phenomenon of c-Jun degradation within the inflammatory response has not yet been fully analyzed. In order to verify this, we investigated LPS-stimulated murine macrophages pre-treated with sodium orthovanadate (SO) in order to uncover the regulatory mechanisms of the MAPKs which regulate c-Jun degradation within the inflammatory response. Through our study, we found that SO suppressed the production of prostaglandin E2 (PGE2) and the expression of COX-2 in LPS-stimulated RAW264.7 cells. Additionally, SO decreased total c-Jun levels, without altering the amount of mRNA, although the phospho-levels of p38, ERK, and JNK were strongly enhanced. Through the usage of selective MAPK inhibitors, and knockdown and overexpression strategies, p38 was revealed to be a major MAPK which regulates c-Jun degradation. Further analysis indicates that the phosphorylation of p38 is a determinant for c-Jun degradation, and is sufficient to induce ubiquitination-dependent c-Jun degradation, recovered through MG132 treatment. Therefore, our results suggest that the hyperphosphorylation of p38 by SO contributes to c-Jun degradation, which is linked to the suppression of PGE2 secretion in inflammatory responses; and thus, finding drugs to increase p38 activity could be a novel strategy for the development of anti-inflammatory drugs. [BMB Reports 2022; 55(8): 389-394].


Dinoprostone , Lipopolysaccharides , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Sodium/metabolism , Ubiquitination , Vanadates/metabolism , Vanadates/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Int J Mol Sci ; 23(7)2022 Apr 03.
Article En | MEDLINE | ID: mdl-35409346

Loratadine is an anti-histamine routinely used for treating allergies. However, recent findings have shown that Loratadine may also have anti-inflammatory functions, while their exact mechanisms have not yet been fully uncovered. In this paper, we investigated whether Loratadine can be utilized as an anti-inflammatory drug through a series of in vitro and in vivo experiments using a murine macrophage cell line and an acute gastritis mouse model. Loratadine was found to dramatically reduce the expression of pro-inflammatory genes, including MMP1, MMP3, and MMP9, and inhibit AP-1 transcriptional activation, as demonstrated by the luciferase assay. Therefore, we decided to further explore its role in the AP-1 signaling pathway. The expression of c-Jun and c-Fos, AP-1 subunits, was repressed by Loratadine and, correspondingly, the expression of p-JNK, p-MKK7, and p-TAK1 was also inhibited. In addition, Loratadine was able to reduce gastric bleeding in acute gastritis-induced mice; Western blotting using the stomach samples showed reduced p-c-Fos protein levels. Loratadine was shown to effectively suppress inflammation by specifically targeting TAK1 and suppressing consequent AP-1 signaling pathway activation and inflammatory cytokine production.


Gastritis , Transcription Factor AP-1 , Animals , Anti-Inflammatory Agents/adverse effects , Gastritis/chemically induced , Histamine Antagonists/therapeutic use , Loratadine/pharmacology , Loratadine/therapeutic use , Mice , RAW 264.7 Cells , Transcription Factor AP-1/metabolism
15.
Biomed Pharmacother ; 148: 112740, 2022 Apr.
Article En | MEDLINE | ID: mdl-35202908

BN82002 is well-known as an inhibitor of the CDC25 phosphatase. However, it was recently reported that BN82002 also selectively suppressed AKT2 and reduced inflammatory responses in lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells. Therefore, in this study, we evaluated the alleviating efficacy of BN82002 in sepsis in vivo. BN82002 (50 µM) suppressed the mRNA levels of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in LPS-treated peritoneal macrophages without cytotoxicity. The septic in vivo mouse model was established on the basis of the endotoxin model using poly(I:C) (10 mg/kg) and LPS (54 mg/kg). In histological analysis, peritoneal injection of BN82002 (20 mg/kg) significantly reduced lung, kidney, and liver damage. Lung edema and serum alanine transaminase (ALT), aspartate transaminase (AST), TNF-α, IL-1ß, and nitric oxide (NO) levels also were decreased by BN82002 (20 mg/kg). In addition, BN82002 (20 mg/kg) suppressed the mRNA levels of TNF-α in lung and liver tissues. Gene expression levels of IL-1ß and IL-6 were decreased in lung, kidney, and liver in the BN82002 (20 mg/kg) group. Furthermore, p-AKT2 and p-IκBα levels were reduced by BN82002 (20 mg/kg). Finally, all septic mice died 7 days after poly(I:C)/LPS-injection, whereas 4 mice in the BN82002 (20 mg/kg) group, survived strongly suggesting that BN82002 reduces sepsis mortality. In conclusion, we verified that pre-treatment with BN82002 protects against tissue damage and increases survival by inhibiting AKT2-NF-κB signaling in septic mice. These results suggest that BN82002 could be utilized in the treatment of sepsis.


Ethylamines/pharmacology , Inflammation/metabolism , NF-kappa B/metabolism , Nitro Compounds/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/drug therapy , Animals , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , NF-KappaB Inhibitor alpha/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Sepsis/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36613979

Linosorbs (Los) are cyclic peptides from flaxseed oil composed of the LO mixture (LOMIX). The activity of LO has been reported as being anti-cancer and anti-inflammatory. However, the study of skin protection has still not proceeded. In particular, there are poorly understood mechanisms of melanogenesis to LO. Therefore, we investigated the anti-melanogenesis effects of LOMIX and LO, and its activity was examined in mouse melanoma cell lines. The treatment of LOMIX (50 and 100 µg/mL) and LO (6.25-50 µM) suppressed melanin secretion and synthesis, which were 3-fold increased, in a dose-dependent manner, up to 95%. In particular, [1-9-NαC]-linusorb B3 (LO1) and [1-9-NαC]-linusorb B2 (LO2) treatment (12.5 and 25 µM) highly suppressed the synthesis of melanin in B16F10 cell lines up to 90%, without toxicity. LOMIX and LOs decreased the 2- or 3-fold increased mRNA levels, including the microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2) at the highest concentration (25 µM). Moreover, the treatment of 25 µM LO1 and LO2 inhibited the expression of MITF and phosphorylation of upper regulatory proteins such as CREB and PKA. Taken together, these results suggested that LOMIX and its individual LO could inhibit melanin synthesis via downregulating the CREB-dependent signaling pathways, and it could be used for novel therapeutic materials in hyperpigmentation.


Flax , Melanoma, Experimental , Melanoma , Animals , Mice , Melanins , Monophenol Monooxygenase/metabolism , Flax/metabolism , Peptides, Cyclic/pharmacology , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
17.
Molecules ; 26(21)2021 Nov 03.
Article En | MEDLINE | ID: mdl-34771068

Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/ß and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.


Anti-Inflammatory Agents/pharmacology , Caragana/chemistry , Inflammation/drug therapy , Methanol/chemistry , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cells, Cultured , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Interferon Regulatory Factor-3/antagonists & inhibitors , Interferon Regulatory Factor-3/metabolism , Lipopolysaccharides/antagonists & inhibitors , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism
18.
Plants (Basel) ; 10(11)2021 Oct 29.
Article En | MEDLINE | ID: mdl-34834697

There is a growing need to develop anti-inflammatory drugs to regulate inflammatory responses. An extract of Huberia peruviana Cogn. had the best inhibitory effect on nitric oxide (NO) production in screening process undertaken in our laboratory. However, the anti-inflammatory effect of Huberia peruviana Cogn. methanol extract (Hp-ME) has not been studied. In this study, the anti-inflammatory effect of Hp-ME was assessed by using an NO assay, RT-PCR, luciferase reporter gene activity assay, western blotting assay, HCl/EtOH-induced acute gastritis model, and LPS-induced acute lung injury model. The phytochemical components of Hp-ME were determined through LC-MS/MS analysis. When RAW264.7 and HEK293T cells were treated with Hp-ME, NO production was decreased dose-dependently without cytotoxicity and the mRNA levels of iNOS, COX-2, and TNF-α were decreased. In a luciferase assay, the activity of transcription factors, NF-κB in TRIF or MyD88-overexpressing HEK293T cells was extremely reduced by Hp-ME. The western blotting analysis indicated that Hp-ME has anti-inflammatory effects by inhibiting the phosphorylation of Src. Hp-ME showed anti-inflammatory effects on in vivo models of HCl/EtOH-induced gastritis and LPS-induced acute lung injury. LC-MS/MS revealed that Hp-ME contains several anti-inflammatory flavonoids. The final findings of this study imply that Hp-ME could be used as an anti-inflammatory drug in several inflammatory diseases.

19.
Pharm Biol ; 59(1): 799-810, 2021 Dec.
Article En | MEDLINE | ID: mdl-34190667

CONTEXT: Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE: The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS: RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS: Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1ß, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS: The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.


Anti-Inflammatory Agents/administration & dosage , Barringtonia , Drug Delivery Systems/methods , Gastritis/drug therapy , Plant Extracts/administration & dosage , src-Family Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/metabolism , Dose-Response Relationship, Drug , Gastritis/chemically induced , Gastritis/metabolism , HEK293 Cells , Humans , Male , Methanol/administration & dosage , Methanol/metabolism , Mice , Mice, Inbred ICR , NF-kappa B , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Plant Leaves , Plant Stems , RAW 264.7 Cells , Signal Transduction/drug effects , Signal Transduction/physiology , src-Family Kinases/metabolism
20.
Front Immunol ; 12: 767366, 2021.
Article En | MEDLINE | ID: mdl-35003083

Background: Inflammation, a vital immune response to infection and injury, is mediated by macrophage activation. While spleen tyrosine kinase (Syk) and myeloid differentiation primary response 88 (MyD88) are reportedly involved in inflammatory responses in macrophages, their roles and underlying mechanisms are largely unknown. Methods: Here, the role of the MyD88-Syk axis and the mechanism by which Syk and MyD88 cooperate during macrophage-mediated inflammatory responses are explored using knockout conditions of these proteins and mutation strategy as well as flowcytometric and immunoblotting analyses. Results: Syk rapidly activates the nuclear factor-kappa B (NF-κB) signaling pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the activation of the NF-κB signaling pathway is abolished in Syk-/- RAW264.7 cells. MyD88 activates Syk and Syk-induced activation of NF-κB signaling pathway in LPS-stimulated RAW264.7 cells but Syk-induced inflammatory responses are significantly inhibited in MyD88-/- RAW264.7 cells. MyD88 interacts with Syk through the tyrosine 58 residue (Y58) in the hemi-immunoreceptor tyrosine-based activation motif (ITAM) of MyD88, leading to Syk activation and Syk-induced activation of the NF-κB signaling pathway. Src activates MyD88 by phosphorylation at Y58 via the Src kinase domain. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) activation and Rac1-induced formation of filamentous actin (F actin) activate Src in LPS-stimulated RAW264.7 cells. Conclusions: These results suggest that the MyD88-Syk axis is a critical player in macrophage-mediated inflammatory responses, and its function is promoted by an upstream Src kinase activated by Rac1-generated filamentous actin (F-actin).


Inflammation/immunology , Macrophage Activation/immunology , Macrophages/immunology , Myeloid Differentiation Factor 88/immunology , Syk Kinase/immunology , Animals , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophage Activation/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphorylation , Protein Binding , RAW 264.7 Cells , Signal Transduction/immunology , Syk Kinase/genetics , Syk Kinase/metabolism , Tyrosine/genetics , Tyrosine/immunology , Tyrosine/metabolism
...