Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Mol Biol Rep ; 51(1): 305, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38361124

BACKGROUND: Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS: AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS: Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION: Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.


Apoptosis , Chromones , Stomach Neoplasms , Humans , Animals , Mice , Mice, Nude , Heterografts , Proteomics , Cell Line, Tumor , Stomach Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation
2.
Heliyon ; 10(3): e25136, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38322884

The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate Spirulina platensis, yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums.

3.
Molecules ; 27(16)2022 Aug 16.
Article En | MEDLINE | ID: mdl-36014455

Cadmium (Cd), a harmful heavy metal, can lead to various pulmonary diseases, including chronic obstructive pulmonary disease (COPD), by inducing cytotoxicity and disturbing redox homeostasis. The aim of the present study was to investigate Cd-mediated cytotoxicity using human lung fibroblasts and the therapeutic potential of 3,3'-diindolylmethane (DIM). Cadmium significantly reduced the cell viability of human embryonic lung (HEL299) cells accompanied by enhanced oxidative stress as evidenced by the increased expression of autophagy-related proteins such as LC3B and p62. However, treatment with DIM significantly suppressed autophagic cell death in Cd-induced HEL299 fibroblasts. In addition, DIM induced antioxidant enzyme activity and decreased intracellular reactive oxygen species (ROS) levels in Cd-damaged HEL299 cells. This study suggests that DIM effectively suppressed Cd-induced lung fibroblast cell death through the upregulation of antioxidant systems and represents a potential agent for the prevention of various diseases related to Cd exposure.


Autophagic Cell Death , Cadmium , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Autophagy , Cadmium/toxicity , Fibroblasts/metabolism , Humans , Indoles , Lung/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
4.
Biol Trace Elem Res ; 200(7): 3215-3226, 2022 Jul.
Article En | MEDLINE | ID: mdl-34535882

Several studies on the potential adverse effects of aluminum oxide nanoparticles (Al2O3NPs) have reported conflicting results. The present study investigated the potential adverse effects of Al2O3NPs in Sprague-Dawley rats following 28-day repeated oral administration. In addition, we aimed to determine the target organ and no-observed-adverse-effect level (NOAEL) of Al2O3NPs. Al2O3NPs was administered once daily by gavage to male and female rats at dose levels of 0, 500, and 1000 mg/kg/day for 28 days. There were no treatment-related adverse effects as indicated by the clinical signs, body weight, food consumption, urinalysis, ophthalmology, hematology, serum biochemistry, gross pathology, organ weight, and histopathology at all the tested doses. Under the experimental conditions of the present study, 28-day repeated oral administration of Al2O3NPs at doses of up to 1000 mg/kg/day did not induce any treatment-related systemic toxicity in male and female rats. The NOAEL of Al2O3NPs was set at 1000 mg/kg/day in both male and female rats and no target organs were identified.


Aluminum Oxide , Nanoparticles , Administration, Oral , Aluminum Oxide/toxicity , Animals , Body Weight , Female , Male , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , No-Observed-Adverse-Effect Level , Organ Size , Rats , Rats, Sprague-Dawley
5.
Drug Chem Toxicol ; 45(3): 1088-1097, 2022 May.
Article En | MEDLINE | ID: mdl-32815395

The present study investigated the potential adverse effects of aluminum chloride (AlCl3) following a 4-week repeated oral administration in Sprague-Dawley rats. The test article was administered once daily by gavage to male and female rats at dose levels of 0, 100, 300, and 900 mg/kg/day for 4 weeks. After administration of AlCl3 at 900 mg/kg/day, treatment-related systemic toxicity manifested as significant increases in salivation incidence, neutrophil percentage, reticulocytes, serum triglyceride, adrenal gland and liver weights, and single-hepatocyte necrosis, as well as significant decreases in body weight gain, food intake, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration (MCHC), lymphocyte percentage, serum total protein and albumin, and thymus weight in male rats; and significant increases in salivation incidence, serum triglyceride, and liver weight, as well as a significant decrease in lymphocyte percentage in female rats. At 300 mg/kg/day, a significant decrease in MCHC was found in male rats, but not in female rats. However, this finding was not toxicologically significant because the reduction was minimal and was not accompanied by changes in any other parameters. No treatment-related effects were observed in the 100 mg/kg/day group of both genders. Under the experimental conditions of this study, the target organs of AlCl3 were determined to be the blood, liver, and thymus in rats. The no-observed-adverse-effect level was found to be 300 mg/kg/day in rats of both genders.


Liver , Administration, Oral , Aluminum Chloride/toxicity , Animals , Female , Male , No-Observed-Adverse-Effect Level , Rats , Rats, Sprague-Dawley , Triglycerides
6.
Int J Pharm ; 591: 119998, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-33115696

The purpose of this study was to develop an oral dosage form of orlistat for the treatment of obesity with reduced adverse effects, for example, fatty and oily stool that have been reported to be associated with the mechanism of action of orlistat. Based on the in vitro results obtained in this study, xanthan gum was selected as an oil-entrapping agent. Thus, the co-administration of mini-tablets containing orlistat and mini-tablets containing xanthan gum was proposed as the optimized dosage form for orlistat. The prepared mini-tablets showed an equivalent drug release profile with a similarity factor value, f2, more than 50 to that of commercially marketed orlistat immediate-release capsules, Xenical® capsules. In addition, the optimized formulation also showed the in vivo anti-obesity effects similar to those of Xenical® capsules. In particular, the analysis of feces excreted by Sprague-Dawley rats revealed that the optimized formulation resulted in significantly less oily stool, steatorrhea, than Xenical® capsules (P < 0.05). Consequently, the proposed formulation, the co-administration of mini-tablets containing orlistat and mini-tablets containing xanthan gum, may be considered as a promising anti-obesity treatment with reduced adverse effects related to orlistat.


Obesity , Polysaccharides, Bacterial , Animals , Delayed-Action Preparations , Obesity/drug therapy , Orlistat , Rats , Rats, Sprague-Dawley , Solubility , Tablets
7.
Sci Rep ; 8(1): 2808, 2018 02 12.
Article En | MEDLINE | ID: mdl-29434219

Epithelial-mesenchymal transition (EMT) is a key initial step in metastasis for malignant cancer cells to obtain invasive and motile properties. Inhibiting EMT has become a new strategy for cancer therapy. In our previous in vivo study, Nemopilema nomurai jellyfish venom (NnV) -treated HepG2 xenograft mice group showed that E-cadherin expression was strongly detected compared with non-treated groups. Therefore, this study aimed to determine whether NnV could inhibit the invasive and migratory abilities of HepG2 human hepatocellular carcinoma cells and to examine its effect on EMT. Our results revealed that transforming growth factor (TGF)-ß1 induced cell morphological changes and downregulated E-cadherin and ß-catenin expression, but upregulated N-cadherin and vimentin expression through the Smad and NF-κB pathways in HepG2 cells. Treatment of TGF-ß1-stimulated HepG2 cells with NnV reversed the EMT-related marker expression, thereby inhibiting cell migration and invasion. NnV also significantly suppressed the activation of p-Smad3, Smad4, and p-NF-κB in a dose-dependent manner. These data indicated that NnV can significantly suppress cell migration and invasion by inhibiting EMT in HepG2 cells, and therefore might be a promising target for hepatocellular carcinoma therapeutics.


Carcinoma, Hepatocellular/drug therapy , Cnidarian Venoms/pharmacology , Liver Neoplasms/drug therapy , NF-kappa B/antagonists & inhibitors , Smad3 Protein/antagonists & inhibitors , Smad4 Protein/antagonists & inhibitors , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Xenograft Model Antitumor Assays/methods , beta Catenin/metabolism
8.
Part Fibre Toxicol ; 13(1): 56, 2016 10 28.
Article En | MEDLINE | ID: mdl-27788687

BACKGROUND: Copper nanoparticles (Cu NPs) have great potential in electronics and biomedical fields because of their efficient thermodynamic and anti-microbial properties. However, their potential toxic effects and kinetic data following repeated exposure are still unclear. METHODS: We evaluated the physicochemical properties of Cu NPs (25 nm) and copper microparticles (Cu MPs, 14-25 µm). Comparative in vivo toxicity of Cu NPs and Cu MPs was evaluated by conducting a 28-day repeated oral dose study at equivalent dose levels of 0, 100, 200, and 400 mg/kg/day (vehicle, 1 % hydroxypropyl methylcellulose). We determined Cu levels in the blood, tissues, urine, and feces by using inductively coupled plasma mass spectrometry. RESULTS: The solubility of Cu NPs and Cu MPs was 84.5 and 17.2 %, respectively, in an acidic milieu; however, they scarcely dissolved in vehicle or intestinal milieus. The specific surface area of Cu NPs and Cu MPs was determined to be 14.7 and 0.16 m2/g, respectively. Cu NPs exhibited a dose-dependent increase of Cu content in the blood and tested organs, with particularly high levels of Cu in the liver, kidney, and spleen. Only for liver and kidney increased Cu levels were found in Cu MPs-treated rats. Cu NPs caused a dose-related increase in Cu levels in urine, whereas Cu MPs did not affect the urine Cu levels. Extremely high levels of Cu were detected in the feces of Cu MPs-treated rats, whereas much lower levels were detected in the feces of Cu NPs-treated rats. A comparative in vivo toxicity study showed that Cu NPs caused damages to red blood cells, thymus, spleen, liver, and kidney at ≥200 mg/kg/days, but Cu MPs did not cause any adverse effects even at the highest dose. CONCLUSIONS: Overall, the in vivo repeated dose toxicity study of Cu NPs and Cu MPs demonstrated that large surface area and high solubility in physiological milieus could directly influence the toxicological responses and biodistribution of Cu particles when administered orally. Under these experimental conditions, the no-observed-adverse-effect levels of Cu NPs and Cu MPs were determined to be 100 and ≥400 mg/kg/day, respectively.


Copper/pharmacokinetics , Copper/toxicity , Metal Nanoparticles/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Male , Microscopy, Electron, Scanning , Microspheres , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Tissue Distribution , Toxicity Tests, Subchronic
9.
Article En | MEDLINE | ID: mdl-26347784

Bee venom (BV) from honey bee (Apis mellifera L.) has been used in oriental medicine and cosmetic ingredients because of its diverse pharmacological activities. In many studies, among BV components, phospholipase A2 (PLA2) is known as a major player in BV-induced allergic reaction. Therefore, we removed PLA2 from BV using ultrafiltration and then investigated in vitro phototoxicity and in vivo skin sensitization of PLA2-free BV (PBV) in comparison with regular BV. The 3T3 neutral red uptake phototoxicity assay can be appropriated to identify the phototoxic effect of a test substance upon the exposure of ultraviolet A. Chlorpromazine, a positive control, showed high levels of photoirritation factor and mean photo effect values, while BV and PBV had less of these values. Local lymph node assay is an alternative method to evaluate skin sensitization potential of chemicals. BALB/c mice were treated with p-phenylenediamine (PPD, positive control), BV, or PBV. In all of PPD concentrations, stimulation indexes (SI) as sensitizing potential of chemicals were ≥1.6, determined to be sensitizer, while SI levels of BV and PBV were below 1.6. Thus, based on these findings, we propose that both BV and PBV are nonphototoxic compounds and nonsensitizers.

10.
Biochem Biophys Res Commun ; 408(1): 78-83, 2011 Apr 29.
Article En | MEDLINE | ID: mdl-21458419

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. ß-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/µg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.


Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic , Seeds/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/genetics , Molecular Sequence Data , Oryza/drug effects , Peptide Chain Initiation, Translational , Plants, Genetically Modified/drug effects , Proteomics
...